A290126 Least k such that the sum of the n greatest divisors of k is a prime number.
2, 2, 4, 28, 16, 140, 24, 90, 120, 108, 60, 144, 300, 288, 120, 672, 252, 432, 240, 630, 960, 756, 480, 1200, 1080, 1728, 1680, 1008, 720, 2016, 840, 3150, 2160, 2700, 1980, 4800, 2520, 3780, 3240, 8736, 3960, 3600, 6720, 6930, 10800, 6300, 4200, 16848, 9240, 5040
Offset: 1
Keywords
Examples
a(4)=28 because the sum of the last 4 divisors of 28: 28+14+7+4 = 53 is a prime number.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..1000
Programs
-
Maple
M:= 20000: # to get all terms before the first term > M R:= 'R': for k from 2 to M do F:= ListTools:-PartialSums(sort(convert( numtheory:-divisors(k),list),`>`)); for n in select(t -> isprime(F[t]),[$1..nops(F)]) do if not assigned(R[n]) then R[n]:= k fi od od: inds:= map(op,{indices(R)}): N:= min({$1..max(inds)+1} minus inds): seq(R[i],i=1..N-1); # Robert Israel, Jul 24 2017
-
Mathematica
Table[k=1;While[Nand[Length@#>=n,PrimeQ[Total@Take[PadLeft[#,n],n]]]&@Divisors@k,k++];k,{n,1,20}](* Program from Michael De Vlieger adapted for this sequence. See A289776 *)
-
PARI
a(n) = {my(i = 2, d); while(1, d = divisors(i); if(#d >= n, if(isprime(sum(j=#d-n+1,#d,d[j])), return(i), i++), i++)); i} \\ David A. Corneth, Jul 20 2017
-
Python
from sympy import divisors, isprime def A290126(n): i = 1 while len(divisors(i)) < n or not isprime(sum(divisors(i)[-n:])): i += 1 return i # Chai Wah Wu, Aug 05 2017
Comments