A290171 Numbers k such that (k-1)^2 < (k-1)! mod k^2.
5, 13, 563, 1277, 780887
Offset: 1
Crossrefs
Cf. A007540.
Programs
-
Mathematica
Select[Range[10^4],(#-1)^2
Giorgos Kalogeropoulos, Jul 23 2021 *) -
PARI
for(n=1,1e5,a=(n-1)!%n^2;if((n-1)^2
-
PARI
is(n) = (n-1)^2 < lift(Mod((n-1)!, n^2)) \\ Felix Fröhlich, Jul 23 2017
-
PARI
val(n, p) = my(r=0); while(n, r+=n\=p); r is(n) = my(f = factor(n), r = Mod(1, n^2)); if(#f~ > 2, return(0), if(#f~==2, if(f[1,1]!=2, return(0)))); forprime(p=2,n-1, r*=Mod(p,n^2)^val(n-1,p)); (n-1)^2 < lift(r) \\ David A. Corneth, Jul 23 2017
-
Python
def ok(n): nn = n**2; f = 1%nn for k in range(1, n): f = f*k%nn return (n-1)**2 < f print(list(filter(ok, range(1, 1300)))) # Michael S. Branicky, Jul 23 2021
-
Python
# faster for initial segment of sequence from math import factorial def afind(limit, startk=1): k = startk; kkprev = (k-1)**2; f = factorial(k-1) while k < limit: kk = k*k if kkprev < f%kk: print(k, end=", ") kkprev = kk; f *= k; k += 1 afind(10000) # Michael S. Branicky, Jul 25 2021
Extensions
a(5) from Chai Wah Wu, Jul 30 2017
Comments