cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A276156 Numbers obtained by reinterpreting base-2 representation of n in primorial base: a(0) = 0, a(2n) = A276154(a(n)), a(2n+1) = 1 + A276154(a(n)).

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 8, 9, 30, 31, 32, 33, 36, 37, 38, 39, 210, 211, 212, 213, 216, 217, 218, 219, 240, 241, 242, 243, 246, 247, 248, 249, 2310, 2311, 2312, 2313, 2316, 2317, 2318, 2319, 2340, 2341, 2342, 2343, 2346, 2347, 2348, 2349, 2520, 2521, 2522, 2523, 2526, 2527, 2528, 2529, 2550, 2551, 2552, 2553, 2556, 2557, 2558, 2559, 30030, 30031
Offset: 0

Views

Author

Antti Karttunen, Aug 24 2016

Keywords

Comments

Numbers that are sums of distinct primorial numbers, A002110.
Numbers with no digits larger than one in primorial base, A049345.

Crossrefs

Complement of A177711.
Subsequences: A328233, A328832, A328462 (odd bisection).
Conjectured subsequences: A328110, A380527.
Fixed points of A328841, positions of zeros in A328828, A328842, and A329032, positions of ones in A328581, A328582, and A381032.
Positions of terms < 2 in A328114.
Indices where A327860 and A329029 coincide.
Cf. also table A328464 (and its rows).

Programs

  • Mathematica
    nn = 65; b = MixedRadix[Reverse@ Prime@ Range[IntegerLength[nn, 2] - 1]]; Table[FromDigits[IntegerDigits[n, 2], b], {n, 0, 65}] (* Version 10.2, or *)
    Table[Total[Times @@@ Transpose@ {Map[Times @@ # &, Prime@ Range@ Range[0, Length@ # - 1]], Reverse@ #}] &@ IntegerDigits[n, 2], {n, 0, 65}] (* Michael De Vlieger, Aug 26 2016 *)
  • PARI
    A276156(n) = { my(s=0, p=1, r=1); while(n, if(n%2, s += r); n>>=1; p = nextprime(1+p); r *= p); (s); }; \\ Antti Karttunen, Feb 03 2022
  • Python
    from sympy import prime, primorial, primepi, factorint
    from operator import mul
    def a002110(n): return 1 if n<1 else primorial(n)
    def a276085(n):
        f=factorint(n)
        return sum([f[i]*a002110(primepi(i) - 1) for i in f])
    def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) # after Chai Wah Wu
    def a(n): return 0 if n==0 else a276085(a019565(n))
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 23 2017
    

Formula

a(0) = 0, a(2n) = A276154(a(n)), a(2n+1) = 1+A276154(a(n)).
Other identities. For all n >= 0:
a(n) = A276085(A019565(n)).
A049345(a(n)) = A007088(n).
A257993(a(n)) = A001511(n).
A276084(a(n)) = A007814(n).
A051903(a(n)) = A351073(n).

A381035 Numbers such that the least significant nonzero digit in their primorial base representation (A049345) is 1.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 9, 11, 13, 14, 15, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 41, 43, 44, 45, 47, 49, 50, 51, 53, 55, 56, 57, 59, 61, 62, 63, 65, 66, 67, 68, 69, 71, 73, 74, 75, 77, 79, 80, 81, 83, 85, 86, 87, 89, 91, 92, 93, 95, 96, 97, 98, 99, 101, 103, 104, 105, 107, 109, 110, 111
Offset: 1

Views

Author

Antti Karttunen, Feb 17 2025

Keywords

Comments

Numbers k such that A327860(k) is not a multiple of A053669(k), where A327860 is the arithmetic derivative of the primorial base exp-function, and A053669(k) gives the least prime not dividing k.
The asymptotic density of this sequence is 0.70523017... (A064648). - Amiram Eldar, Feb 17 2025

Examples

			   n, A049345(n), A276088(n)
  ---------------------------------------------
   4       20       2, thus 4 is not present,
  11      121       1, thus 11 is present,
  14      210       1, thus 14 is present.
		

Crossrefs

Complement of A380535 (apart from 0 which is in neither).
Subsequences: A276156, A290249, A381034.

Programs

  • Mathematica
    q[n_] := Module[{k = n, p = 2, r}, While[{k, r} = QuotientRemainder[k, p]; k > 0 && r == 0, p = NextPrime[p]]; r == 1]; Select[Range[120], q] (* Amiram Eldar, Feb 17 2025 *)
  • PARI
    A276088(n) = { my(e=0, p=2); while(n && !(e=(n%p)), n = n/p; p = nextprime(1+p)); (e); };
    is_A381035(n) = (1==A276088(n));

Formula

{k such that A276088(k) = 1}.

A351125 Numbers that are sums of consecutive primorial numbers.

Original entry on oeis.org

1, 2, 3, 6, 8, 9, 30, 36, 38, 39, 210, 240, 246, 248, 249, 2310, 2520, 2550, 2556, 2558, 2559, 30030, 32340, 32550, 32580, 32586, 32588, 32589, 510510, 540540, 542850, 543060, 543090, 543096, 543098, 543099, 9699690, 10210200, 10240230, 10242540, 10242750
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 22 2022

Keywords

Examples

			2550 is in the sequence because 2550 = 30 + 210 + 2310 = 2*3*5 + 2*3*5*7 + 2*3*5*7*11.
		

Crossrefs

Showing 1-3 of 3 results.