A290270 Number of minimal dominating sets in the n-wheel graph.
3, 4, 7, 6, 6, 15, 15, 22, 28, 45, 58, 79, 115, 159, 223, 307, 438, 609, 852, 1194, 1675, 2347, 3282, 4606, 6451, 9040, 12663, 17749, 24871, 34845, 48831, 68424, 95883, 134350, 188266, 263811, 369667, 518002, 725860, 1017129, 1425262, 1997179, 2798583
Offset: 3
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- Eric Weisstein's World of Mathematics, Minimal Dominating Set
- Eric Weisstein's World of Mathematics, Wheel Graph
- Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, -1, -1, 1).
Crossrefs
Cf. A253413.
Programs
-
Magma
I:=[3,4,7,6,6,15,15,22,28]; [n le 9 select I[n] else Self(n-2)+Self(n-3)+Self(n-4)-Self(n-6)-1: n in [1..50]]; // Vincenzo Librandi, Aug 04 2017
-
Mathematica
Table[1 + RootSum[1 - #1^2 - #1^3 - #1^4 + #1^6 &, #^(n - 1) &], {n, 3, 20}] (* Eric W. Weisstein, Aug 04 2017 *) LinearRecurrence[{1, 1, 0, 0, -1, -1, 1}, {3, 4, 7, 6, 6, 15, 15}, 20] (* Eric W. Weisstein, Aug 04 2017 *) CoefficientList[Series[(3 + x - 5 x^3 - 7 x^4 + 6 x^5 + x^6)/((1 - x^2 - x^3 - x^4 + x^6) (1-x)), {x, 0,33}], x] (* Vincenzo Librandi, Aug 04 2017 *)
-
PARI
Vec(((7-6*x-5*x^2+2*x^5+x^6)) / ((1-x^2-x^3-x^4+x^6)*(1-x)) + O(x^40)) \\ Andrew Howroyd, Jul 27 2017
Formula
From Andrew Howroyd, Jul 27 2017: (Start)
a(n) = A253413(n-1) + 1 for n > 2.
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-6) - 1 for n>8.
G.f.: x*(7 - 6*x - 5*x^2 + 2*x^5 + x^6) / ((1 - x^2 - x^3 -x^4 + x^6)*(1 - x)).
(End)
G.f.: x^3*(3+x-5*x^3-7*x^4+6*x^5+x^6)/((1-x^2-x^3-x^4+x^6)*(1-x)). - Vincenzo Librandi, Aug 04 2017
Extensions
a(3) and a(16)-a(45) from Andrew Howroyd, Jul 27 2017
Comments