cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290270 Number of minimal dominating sets in the n-wheel graph.

Original entry on oeis.org

3, 4, 7, 6, 6, 15, 15, 22, 28, 45, 58, 79, 115, 159, 223, 307, 438, 609, 852, 1194, 1675, 2347, 3282, 4606, 6451, 9040, 12663, 17749, 24871, 34845, 48831, 68424, 95883, 134350, 188266, 263811, 369667, 518002, 725860, 1017129, 1425262, 1997179, 2798583
Offset: 3

Views

Author

Eric W. Weisstein, Jul 25 2017

Keywords

Comments

The n-wheel graph is well defined for n >= 4. If the sequence is extended to n=1 using A253413 then the initial terms are 1,2,3,4,... If the sequence is extended using the recurrence the initial terms are 7,1,3,4,... - Andrew Howroyd, Jul 27 2017

Crossrefs

Cf. A253413.

Programs

  • Magma
    I:=[3,4,7,6,6,15,15,22,28]; [n le 9 select I[n] else Self(n-2)+Self(n-3)+Self(n-4)-Self(n-6)-1: n in [1..50]]; // Vincenzo Librandi, Aug 04 2017
  • Mathematica
    Table[1 + RootSum[1 - #1^2 - #1^3 - #1^4 + #1^6 &, #^(n - 1) &], {n, 3, 20}] (* Eric W. Weisstein, Aug 04 2017 *)
    LinearRecurrence[{1, 1, 0, 0, -1, -1, 1}, {3, 4, 7, 6, 6, 15, 15}, 20] (* Eric W. Weisstein, Aug 04 2017 *)
    CoefficientList[Series[(3 + x - 5 x^3 - 7 x^4 + 6 x^5 + x^6)/((1 - x^2 - x^3 - x^4 + x^6) (1-x)), {x, 0,33}], x] (* Vincenzo Librandi, Aug 04 2017 *)
  • PARI
    Vec(((7-6*x-5*x^2+2*x^5+x^6)) / ((1-x^2-x^3-x^4+x^6)*(1-x)) + O(x^40)) \\ Andrew Howroyd, Jul 27 2017
    

Formula

From Andrew Howroyd, Jul 27 2017: (Start)
a(n) = A253413(n-1) + 1 for n > 2.
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-6) - 1 for n>8.
G.f.: x*(7 - 6*x - 5*x^2 + 2*x^5 + x^6) / ((1 - x^2 - x^3 -x^4 + x^6)*(1 - x)).
(End)
G.f.: x^3*(3+x-5*x^3-7*x^4+6*x^5+x^6)/((1-x^2-x^3-x^4+x^6)*(1-x)). - Vincenzo Librandi, Aug 04 2017

Extensions

a(3) and a(16)-a(45) from Andrew Howroyd, Jul 27 2017