cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290307 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + x^j)/(1 + x^(k*j)).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 2, 1, 2, 1, 0, 1, 1, 1, 2, 2, 2, 2, 1, 0, 1, 1, 1, 2, 2, 2, 3, 3, 2, 0, 1, 1, 1, 2, 2, 3, 3, 3, 3, 2, 0, 1, 1, 1, 2, 2, 3, 3, 4, 4, 3, 2, 0, 1, 1, 1, 2, 2, 3, 4, 4, 4, 5, 4, 2, 0, 1, 1, 1, 2, 2, 3, 4, 4, 5, 6, 6, 5, 3, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 26 2017

Keywords

Comments

A(n,k) is the number of partitions of n into distinct parts where no part is a multiple of k.

Examples

			Square array begins:
  1,  1,  1,  1,  1,  1, ...
  0,  1,  1,  1,  1,  1, ...
  0,  0,  1,  1,  1,  1, ...
  0,  1,  1,  2,  2,  2, ...
  0,  1,  1,  1,  2,  2, ...
  0,  1,  2,  2,  2,  3, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[(1 + x^i)/(1 + x^(i k)), {i, Infinity}], {x, 0, n}]][j - n + 1], {j, 0, 13}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[QPochhammer[-1, x]/QPochhammer[-1, x^k], {x, 0, n}]][j - n + 1], {j, 0, 13}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} (1 + x^j)/(1 + x^(k*j)).
For asymptotics of column k see comment from Vaclav Kotesovec in A261772.