cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A261770 Expansion of Product_{k>=1} (1 + x^k) / (1 + x^(6*k)).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 8, 9, 11, 13, 16, 19, 22, 26, 30, 35, 41, 47, 55, 63, 73, 84, 96, 110, 125, 143, 162, 184, 208, 235, 266, 300, 338, 380, 427, 479, 536, 600, 670, 748, 834, 929, 1034, 1149, 1277, 1417, 1571, 1740, 1925, 2129, 2351, 2596, 2863
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 31 2015

Keywords

Comments

a(n) is the number of partitions of n into distinct parts where no part is a multiple of 6. - Joerg Arndt, Aug 31 2015

Crossrefs

Cf. A261736.
Cf. A000700 (m=2), A003105 (m=3), A070048 (m=4), A096938 (m=5), A097793 (m=7), A261771 (m=8), A112193 (m=9), A261772 (m=10).
Column k=6 of A290307.

Programs

  • Maple
    b:= proc(n, i) option remember;  local r;
          `if`(2*n>i*(i+1)-(j-> 6*j*(j+1))(iquo(i, 6, 'r')), 0,
          `if`(n=0, 1, b(n, i-1)+`if`(i>n or r=0, 0, b(n-i, i-1))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..80);  # Alois P. Heinz, Aug 31 2015
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^k) / (1 + x^(6*k)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(5*n/2)/3) * 5^(1/4) / (2^(7/4) * sqrt(3) * n^(3/4)) * (1 - (9/(4*Pi*sqrt(10)) + 5*Pi*sqrt(5/2)/144) / sqrt(n)). - Vaclav Kotesovec, Aug 31 2015, extended Jan 21 2017
G.f.: Product_{k>=1} (1 - x^(12*k-6))/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 07 2017

A261771 Expansion of Product_{k>=1} (1 + x^k) / (1 + x^(8*k)).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 5, 7, 9, 10, 13, 15, 18, 22, 26, 30, 36, 42, 49, 58, 67, 77, 89, 103, 118, 136, 156, 177, 203, 231, 263, 299, 338, 383, 433, 489, 550, 620, 696, 781, 877, 981, 1097, 1227, 1369, 1526, 1702, 1893, 2104, 2339, 2595, 2877, 3189, 3530
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 31 2015

Keywords

Comments

a(n) is the number of partitions of n into distinct parts where no part is a multiple of 8.

Crossrefs

Cf. A261735.
Cf. A000700 (m=2), A003105 (m=3), A070048 (m=4), A096938 (m=5), A261770 (m=6), A097793 (m=7), A112193 (m=9), A261772 (m=10).
Column k=8 of A290307.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
           [0, 1, 0, 1, 0, 1, 0, 1, -1, 1, 0, 1, 0, 1, 0, 1]
           [1+irem(d, 16)], d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Aug 31 2015
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^k) / (1 + x^(8*k)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(7*n/6)/2) * 7^(1/4) / (4 * 6^(1/4) * n^(3/4)) * (1 - (3*sqrt(3)/ (2*Pi*sqrt(14)) + 7*Pi*sqrt(7)/(96*sqrt(6))) / sqrt(n)). - Vaclav Kotesovec, Aug 31 2015, extended Jan 21 2017
G.f.: Product_{k>=1} (1 - x^(16*k-8))/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 07 2017

A261772 Expansion of Product_{k>=1} (1 + x^k) / (1 + x^(10*k)).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 14, 16, 20, 24, 28, 33, 40, 46, 54, 64, 74, 86, 100, 115, 133, 154, 176, 202, 231, 263, 300, 342, 388, 440, 499, 563, 636, 718, 808, 909, 1022, 1146, 1284, 1439, 1608, 1797, 2006, 2236, 2490, 2772, 3081, 3422, 3800, 4212
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 31 2015

Keywords

Comments

a(n) is the number of partitions of n into distinct parts where no part is a multiple of 10.
In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^k)/(1 + x^(m*k)), then a(n) ~ exp(Pi*sqrt((m-1)*n/(3*m))) * (m-1)^(1/4) / (2^(3/2) * 3^(1/4) * m^(1/4) * n^(3/4)) * (1 - (3*sqrt(3*m)/(8*Pi*sqrt(m-1)) + (m-1)^(3/2)*Pi/(48*sqrt(3*m))) / sqrt(n)). - Vaclav Kotesovec, Aug 31 2015, extended Jan 21 2017

Crossrefs

Cf. A145707.
Cf. A000700 (m=2), A003105 (m=3), A070048 (m=4), A096938 (m=5), A261770 (m=6), A097793 (m=7), A261771 (m=8), A112193 (m=9).
Column k=10 of A290307.

Programs

  • Maple
    b:= proc(n, i) option remember;  local r;
          `if`(2*n>i*(i+1)-(j-> 10*j*(j+1))(iquo(i, 10, 'r')), 0,
          `if`(n=0, 1, b(n, i-1)+`if`(i>n or r=0, 0, b(n-i, i-1))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..80);  # Alois P. Heinz, Aug 31 2015
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^k) / (1 + x^(10*k)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(3*n/10)) * 3^(1/4) / (2^(7/4) * 5^(1/4) * n^(3/4)) * (1 - (sqrt(15)/(4*Pi*sqrt(2)) + 3*Pi*sqrt(3)/(16*sqrt(10))) / sqrt(n)). - Vaclav Kotesovec, Aug 31 2015, extended Jan 21 2017
G.f.: Product_{k>=1} (1 - x^(20*k-10))/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 07 2017

A302233 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + x^(k*j))/(1 + x^j).

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -1, 1, 0, 1, -1, 0, -2, 0, 1, -1, 0, 0, 2, 0, 1, -1, 0, -1, 0, -3, 0, 1, -1, 0, -1, 2, -1, 4, 0, 1, -1, 0, -1, 1, -2, 1, -5, 0, 1, -1, 0, -1, 1, 0, 1, -1, 6, 0, 1, -1, 0, -1, 1, -1, 0, -2, 1, -8, 0, 1, -1, 0, -1, 1, -1, 2, -1, 4, 0, 10, 0, 1, -1, 0, -1, 1, -1, 1, -2, 1, -4, 0, -12, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 03 2018

Keywords

Examples

			Square array begins:
1,  1,  1,  1,  1,  1,  ...
0, -1, -1, -1, -1, -1,  ...
0,  1,  0,  0,  0,  0,  ...
0, -2,  0, -1, -1, -1,  ...
0,  2,  0,  2,  1,  1,  ...
0, -3, -1, -2,  0, -1,  ...
		

Crossrefs

Main diagonal gives A081362.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[(1 + x^(k i))/(1 + x^i), {i, 1, n}], {x, 0, n}]][j - n + 1], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[QPochhammer[-1, x^k]/QPochhammer[-1, x], {x, 0, n}]][j - n + 1], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} (1 + x^(k*j))/(1 + x^j).
For asymptotics of column k see comment from Vaclav Kotesovec in A145707.
Showing 1-4 of 4 results.