cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290325 Number of minimal dominating sets (and maximal irredundant sets) in the complete tripartite graph K_{n,n,n}.

Original entry on oeis.org

3, 15, 30, 51, 78, 111, 150, 195, 246, 303, 366, 435, 510, 591, 678, 771, 870, 975, 1086, 1203, 1326, 1455, 1590, 1731, 1878, 2031, 2190, 2355, 2526, 2703, 2886, 3075, 3270, 3471, 3678, 3891, 4110, 4335, 4566, 4803, 5046, 5295, 5550, 5811, 6078
Offset: 1

Views

Author

Eric W. Weisstein, Jul 27 2017

Keywords

Comments

When n>1 the minimal dominating sets consist of either a single vertex from any two of the partitions or all vertices from just one of the partitions. When n=1 only the later are minimal. - Andrew Howroyd, Jul 27 2017

Programs

  • Mathematica
    Rest[With[{nn = 50}, CoefficientList[Series[3 ((x^2 + x + 1)*Exp[x] - (2*x + 1)) + 3*x, {x, 0, nn}], x]*Range[0, nn]!]] (* or *) Table[3*(n^2 +1), {n,1,50}] (* G. C. Greubel, Aug 17 2017 *)
  • PARI
    Vec(3*x*(1 + 2*x - 2*x^2 + x^3) / (1 - x)^3 + O(x^60)) \\ Colin Barker, Jul 27 2017

Formula

a(n) = 3*n^2 + 3 for n > 1. - Andrew Howroyd, Jul 27 2017
From Colin Barker, Jul 27 2017: (Start)
G.f.: 3*x*(1 + 2*x - 2*x^2 + x^3) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 4. (End)
E.g.f.: 3((x^2 + x + 1)*exp(x) - (2*x + 1)) + 3*x. - G. C. Greubel, Aug 17 2017

Extensions

a(6)-a(45) from Andrew Howroyd, Jul 27 2017
Maximal irredundant sets added to name by Eric W. Weisstein, Aug 17 2017