A290326 Triangle read by rows: T(n,k) is the number of c-nets with n+1 faces and k+1 vertices.
0, 0, 0, 0, 0, 1, 0, 0, 0, 4, 3, 0, 0, 0, 3, 24, 33, 13, 0, 0, 0, 0, 33, 188, 338, 252, 68, 0, 0, 0, 0, 13, 338, 1705, 3580, 3740, 1938, 399, 0, 0, 0, 0, 0, 252, 3580, 16980, 39525, 51300, 38076, 15180, 2530, 0, 0, 0, 0, 0, 68, 3740, 39525, 180670, 452865, 685419, 646415, 373175, 121095, 16965, 0, 0, 0, 0, 0, 0, 1938, 51300, 452865, 2020120, 5354832, 9095856, 10215450, 7580040, 3585270, 981708, 118668
Offset: 1
Examples
A(x;t) = t^3*x^3 + (4*t^4 + 3*t^5)*x^4 + (3*t^4 + 24*t^5 + 33*t^6 + 13*t^7)*x^5 + ... Triangle starts: n\k [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [1] 0; [2] 0, 0; [3] 0, 0, 1; [4] 0, 0, 0, 4, 3; [5] 0, 0, 0, 3, 24, 33, 13; [6] 0, 0, 0, 0, 33, 188, 338, 252, 68; [7] 0, 0, 0, 0, 13, 338, 1705, 3580, 3740, 1938, 399; [8] 0, 0, 0, 0, 0, 252, 3580, 16980, 39525, 51300, 38076, 15180, 2530; [9] ...
Links
- Gheorghe Coserea, Rows n = 1..103, flattened
- R. C. Mullin, P. J. Schellenberg, The enumeration of c-nets via quadrangulations, J. Combinatorial Theory 4 1968 259--276. MR0218275 (36 #1362).
Crossrefs
Programs
-
PARI
T(n,k) = { if (n < 3 || k < 3, return(0)); sum(i=0, k-1, sum(j=0, n-1, (-1)^((i+j+1)%2) * binomial(i+j, i)*(i+j+1)*(i+j+2)/2* (binomial(2*n, k-i-1) * binomial(2*k, n-j-1) - 4 * binomial(2*n-1, k-i-2) * binomial(2*k-1, n-j-2)))); }; N=10; concat(concat([0,0,0], apply(n->vector(2*n-3, k, T(n,k)), [3..N]))) \\ test 1: N=100; y=x*Ser(vector(N, n, sum(i=1+(n+2)\3, (2*n)\3-1, T(i,n-i)))); 0 == x*(x+1)^2*(x+2)*(4*x-1)*y' + 2*(x^2-11*x+1)*(x+1)^2*y + 10*x^6 /* \\ test 2: x='x; t='t; N=44; y=Ser(apply(n->Polrev(vector(2*n-3, k, T(n, k)), 't), [3..N+2]), 'x) * t*x^3; 0 == (t + 1)^3*(x + 1)^3*(t + x + t*x)^3*y^4 + t*(t + 1)^2*x*(x + 1)^2*((4*t^4 + 12*t^3 + 12*t^2 + 4*t)*x^4 + (12*t^4 + 16*t^3 - 4*t^2 - 8*t)*x^3 + (12*t^4 - 4*t^3 - 49*t^2 - 30*t + 3)*x^2 + (4*t^4 - 8*t^3 - 30*t^2 - 21*t)*x + 3*t^2)*y^3 + t^2*(t + 1)*x^2*(x + 1)*((6*t^5 + 18*t^4 + 18*t^3 + 6*t^2)*x^5 + (18*t^5 + 12*t^4 - 30*t^3 - 24*t^2)*x^4 + (18*t^5 - 30*t^4 - 123*t^3 - 58*t^2 + 17*t)*x^3 + (6*t^5 - 24*t^4 - 58*t^3 + 25*t^2 + 56*t)*x^2 + (17*t^3 + 56*t^2 + 48*t + 3)*x + 3*t)*y^2 + t^3*x^3*((4*t^6 + 12*t^5 + 12*t^4 + 4*t^3)*x^6 + (12*t^6 - 36*t^4 - 24*t^3)*x^5 + (12*t^6 - 36*t^5 - 99*t^4 - 26*t^3 + 25*t^2)*x^4 + (4*t^6 - 24*t^5 - 26*t^4 + 81*t^3 + 80*t^2)*x^3 + (25*t^4 + 80*t^3 + 44*t^2 - 14*t)*x^2 + (-14*t^2 - 17*t)*x + 1)*y + t^6*x^6*((t^4 + 2*t^3 + t^2)*x^4 + (2*t^4 - 7*t^3 - 9*t^2)*x^3 + (t^4 - 9*t^3 + 11*t)*x^2 + (11*t^2 + 13*t)*x - 1) */
Formula
T(n,k) = Sum_{i=0..k-1} Sum_{j=0..n-1} (-1)^(i+j+1) * ((i+j+2)!/(2!*i!*j!)) * (binomial(2*n, k-i-1) * binomial(2*k, n-j-1) - 4 * binomial(2*n-1, k-i-2) * binomial(2*k-1, n-j-2)) for all n >= 3, k >= 3.
A106651(n+1) = Sum_{k=1..2*n-3} T(n,k) for n >= 3.
A000287(n) = Sum_{i=1+floor((n+2)/3)..floor(2*n/3)-1} T(i,n-i).
A000260(n-2) = T(n, 2*n-3) for n>=3.
G.f. y = A(x;t) satisfies: 0 = (t + 1)^3*(x + 1)^3*(t + x + t*x)^3*y^4 + t*(t + 1)^2*x*(x + 1)^2*((4*t^4 + 12*t^3 + 12*t^2 + 4*t)*x^4 + (12*t^4 + 16*t^3 - 4*t^2 - 8*t)*x^3 + (12*t^4 - 4*t^3 - 49*t^2 - 30*t + 3)*x^2 + (4*t^4 - 8*t^3 - 30*t^2 - 21*t)*x + 3*t^2)*y^3 + t^2*(t + 1)*x^2*(x + 1)*((6*t^5 + 18*t^4 + 18*t^3 + 6*t^2)*x^5 + (18*t^5 + 12*t^4 - 30*t^3 - 24*t^2)*x^4 + (18*t^5 - 30*t^4 - 123*t^3 - 58*t^2 + 17*t)*x^3 + (6*t^5 - 24*t^4 - 58*t^3 + 25*t^2 + 56*t)*x^2 + (17*t^3 + 56*t^2 + 48*t + 3)*x + 3*t)*y^2 + t^3*x^3*((4*t^6 + 12*t^5 + 12*t^4 + 4*t^3)*x^6 + (12*t^6 - 36*t^4 - 24*t^3)*x^5 + (12*t^6 - 36*t^5 - 99*t^4 - 26*t^3 + 25*t^2)*x^4 + (4*t^6 - 24*t^5 - 26*t^4 + 81*t^3 + 80*t^2)*x^3 + (25*t^4 + 80*t^3 + 44*t^2 - 14*t)*x^2 + (-14*t^2 - 17*t)*x + 1)*y + t^6*x^6*((t^4 + 2*t^3 + t^2)*x^4 + (2*t^4 - 7*t^3 - 9*t^2)*x^3 + (t^4 - 9*t^3 + 11*t)*x^2 + (11*t^2 + 13*t)*x - 1). - Gheorghe Coserea, Sep 29 2018
Comments