cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290353 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the k-th Euler transform of the sequence with g.f. 1+x.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 3, 1, 0, 1, 1, 4, 6, 5, 1, 0, 1, 1, 5, 10, 14, 7, 1, 0, 1, 1, 6, 15, 30, 27, 11, 1, 0, 1, 1, 7, 21, 55, 75, 58, 15, 1, 0, 1, 1, 8, 28, 91, 170, 206, 111, 22, 1, 0, 1, 1, 9, 36, 140, 336, 571, 518, 223, 30, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Jul 28 2017

Keywords

Comments

A(n,k) is the number of unlabeled rooted trees with exactly n leaves, all in level k. A(3,3) = 6:
: o o o o o o
: | | | / \ / \ /|\
: o o o o o o o o o o
: | / \ /|\ | | ( ) | | | |
: o o o o o o o o o o o o o o
: /|\ ( ) | | | | ( ) | | | | | | |
: o o o o o o o o o o o o o o o o o o

Examples

			Square array A(n,k) begins:
  1, 1,  1,   1,    1,    1,     1,     1,      1, ...
  1, 1,  1,   1,    1,    1,     1,     1,      1, ...
  0, 1,  2,   3,    4,    5,     6,     7,      8, ...
  0, 1,  3,   6,   10,   15,    21,    28,     36, ...
  0, 1,  5,  14,   30,   55,    91,   140,    204, ...
  0, 1,  7,  27,   75,  170,   336,   602,   1002, ...
  0, 1, 11,  58,  206,  571,  1337,  2772,   5244, ...
  0, 1, 15, 111,  518, 1789,  5026, 12166,  26328, ...
  0, 1, 22, 223, 1344, 5727, 19193, 54046, 133476, ...
		

Crossrefs

Main diagonal gives A290354.
Cf. A144150.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n<2, 1, `if`(k=0, 0, add(
          add(A(d, k-1)*d, d=divisors(j))*A(n-j, k), j=1..n)/n))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    A[n_, k_]:=b[n, k]=If[n<2, 1, If[k==0, 0, Sum[Sum[A[d, k - 1]*d, {d, Divisors[j]}] A[n - j, k], {j, n}]/n]]; Table[A[n, d - n], {d, 0, 14}, {n, 0, d}]//Flatten (* Indranil Ghosh, Jul 30 2017, after Maple code *)

Formula

G.f. of column k=0: 1+x, of column k>0: Product_{j>0} 1/(1-x^j)^A(j,k-1).