A290379 Number of minimal dominating sets in the n-ladder graph.
2, 6, 7, 18, 39, 75, 155, 310, 638, 1295, 2624, 5339, 10853, 22069, 44836, 91134, 185259, 376542, 765331, 1555567, 3161843, 6426646, 13062506, 26550391, 53965428, 109688223, 222948193, 453156469, 921069708, 1872133138, 3805230243, 7734373962, 15720610559
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Eric Weisstein's World of Mathematics, Ladder Graph
- Eric Weisstein's World of Mathematics, Minimal Dominating Set
- Index entries for linear recurrences with constant coefficients, signature (0, 1, 3, 4, 4, 1, 2, 3, 5, 4, 2).
Programs
-
Magma
I:=[2,6,7,18,39,75,155,310,638,1295,2624]; [n le 11 select I[n] else Self(n-2)+3*Self(n-3)+4*Self(n-4)+4*Self(n-5)+Self(n-6)+2*Self(n-7)+3*Self(n-8)+5*Self(n-9)+4*Self(n-10)+2*Self(n-11): n in [1..40]]; // Vincenzo Librandi, Aug 04 2017
-
Mathematica
Table[-RootSum[-2 - 4 # - 5 #^2 - 3 #^3 - 2 #^4 - #^5 - 4 #^6 - 4 #^7 - 3 #^8 - #^9 + #^11 &, 621827501801 #^n - 301456826961 #^(n + 1) + 280366986955 #^(n + 2) - 1253389979482 #^(n + 3) + 843186094854 #^(n + 4) - 87555893434 #^(n + 5) + 236346312907 #^(n + 6) - 504072574383 #^(n + 7) + 231943645265 #^(n + 8) - 618185916584 #^(n + 9) + 290649224768 #^(n + 10) &]/2097121971853, {n, 20}] (* Eric W. Weisstein, Aug 04 2017 *) LinearRecurrence[{0, 1, 3, 4, 4, 1, 2, 3, 5, 4, 2}, {2, 6, 7, 18, 39, 75, 155, 310, 638, 1295, 2624}, 20] (* Eric W. Weisstein, Aug 04 2017 *) CoefficientList[Series[((1 + x) (2 + 4 x + x^2 + 5 x^3 + x^4 + 3 x^5 + 5 x^6 + 3 x^7 + 2 x^8 + 2 x^9))/(1 - x^2 - 3 x^3 - 4 x^4 - 4 x^5 - x^6 - 2 x^7 - 3 x^8 - 5 x^9 - 4 x^10 - 2 x^11), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 04 2017 *)
-
PARI
Vec((1+x)*(2+4*x+x^2+5*x^3+x^4+3*x^5+5*x^6+3*x^7+2*x^8+2*x^9)/(1-x^2-3*x^3-4*x^4-4*x^5-x^6-2*x^7-3*x^8-5*x^9-4*x^10-2*x^11)+O(x^40)) \\ Andrew Howroyd, Aug 01 2017
Formula
From Andrew Howroyd, Aug 01 2017: (Start)
a(n) = a(n-2) + 3*a(n-3) + 4*a(n-4) + 4*a(n-5) + a(n-6) + 2*a(n-7) + 3*a(n-8) + 5*a(n-9) + 4*a(n-10) + 2*a(n-11) for n > 11.
G.f.: x*(1+x)*(2 + 4*x + x^2 + 5*x^3 + x^4 + 3*x^5 + 5*x^6 + 3*x^7 + 2*x^8 + 2*x^9)/(1 - x^2 - 3*x^3 - 4*x^4 - 4*x^5 - x^6 - 2*x^7- 3*x^8 - 5*x^9 - 4*x^10 - 2*x^11).
(End)
Extensions
Terms a(9) and beyond from Andrew Howroyd, Aug 01 2017