cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A369079 Number of partitions of [n] such that the element sum of each block is odd.

Original entry on oeis.org

1, 1, 1, 2, 4, 10, 28, 96, 320, 1436, 5556, 28768, 129600, 730864, 3756936, 23286784, 132872192, 910013776, 5679982288, 42235062784, 286769980416, 2281079563104, 16732506817280, 141975748567040, 1115928688967680, 10077454948692288, 84383735744758464
Offset: 0

Views

Author

Alois P. Heinz, Jan 12 2024

Keywords

Comments

Number of partitions of [n] such that each block has an odd number of odd elements.

Examples

			a(0) = 1: the empty partition.
a(1) = 1: 1.
a(2) = 1: 12.
a(3) = 2: 12|3, 1|23.
a(4) = 4: 124|3, 12|34, 14|23, 1|234.
a(5) = 10: 12345, 124|3|5, 12|34|5, 12|3|45, 14|23|5, 1|234|5, 1|23|45, 14|25|3, 1|245|3, 1|25|34.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, x, y) option remember; `if`(n=0, `if`(y=0, 1, 0),
         `if`(n::odd, b(n-1, x+1, y)+`if`(x>0, x*b(n-1, x-1, y+1), 0)+
         `if`(y>0, y*b(n-1, x+1, y-1), 0), b(n-1, x, y+1)+(x+y)*b(n-1, x, y)))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..26);
    # second Maple program:
    b:= proc(x, y) option remember; `if`(x+y=0, 1,
          add(`if`(j::odd, binomial(x-1, j-1)*add(
          b(x-j, y-i)*binomial(y, i), i=0..y), 0), j=1..x))
        end:
    a:= n-> (h-> b(n-h, h))(iquo(n, 2)):
    seq(a(n), n=0..26);

A307375 Expansion of Sum_{j>=0} j!*x^j / Product_{k=1..j} (1 - k^2*x).

Original entry on oeis.org

1, 1, 3, 17, 151, 1893, 31499, 666169, 17351967, 543441005, 20079329875, 861908850561, 42439075349543, 2371469004695797, 149022897087857691, 10448429535366899273, 811758520658841809839, 69463012765807086749949, 6511800419610377560644707, 665560984365147223546851985
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2019

Keywords

Comments

a(n) is the number of partitions of [2n] such that the largest element of each block is even. a(3) = 17: 123456, 1234|56, 12356|4, 124|356, 1256|34, 12|3456, 12|34|56, 12|356|4, 13456|2, 134|256, 134|2|56, 1356|24, 1356|2|4, 14|2356, 156|234, 14|2|356, 156|2|34. - Alois P. Heinz, Jun 10 2023

Crossrefs

Bisection of A290383 (even part).

Programs

  • Maple
    b:= proc(n, x, y) option remember; `if`(n=0, 1, `if`(n::odd, 0,
          b(n-1, y, x+1))+b(n-1, y, x)*x+b(n-1, y, x)*y)
        end:
    a:= n-> b(2*n, 0$2):
    seq(a(n), n=0..19);  # Alois P. Heinz, Jun 10 2023
  • Mathematica
    nmax = 19; CoefficientList[Series[Sum[j! x^j/Product[(1 - k^2 x), {k, 1, j}], {j, 0, nmax}], {x, 0, nmax}], x]

A363589 Number of partitions of [2n+1] such that the largest element of each block is odd.

Original entry on oeis.org

1, 2, 8, 56, 584, 8360, 155720, 3633704, 103284296, 3499082408, 138860069192, 6364334129192, 332934707138888, 19681714722718376, 1303617735072968264, 96028608749005335080, 7816178772774327523400, 698943538498179895072424, 68316963055524325115842376
Offset: 0

Views

Author

Alois P. Heinz, Jun 10 2023

Keywords

Examples

			a(0) = 1: 1.
a(1) = 2: 123, 1|23.
a(2) = 8: 12345, 123|45, 1245|3, 13|245, 145|23, 1|2345, 1|23|45, 1|245|3.
		

Crossrefs

Bisection of A290383 (odd part).
Cf. A000110, A307375 (the largest element of each block is even).

Programs

  • Maple
    b:= proc(n, x, y) option remember; `if`(n=0, 1, `if`(n::even, 0,
          b(n-1, y, x+1))+b(n-1, y, x)*x+b(n-1, y, x)*y)
        end:
    a:= n-> b(2*n+1, 0$2):
    seq(a(n), n=0..20);

Formula

a(n) = A290383(2*n+1).

A290384 Number of ordered set partitions of [n] such that the smallest element of each block is odd.

Original entry on oeis.org

1, 1, 1, 3, 5, 23, 57, 355, 1165, 9135, 37313, 352667, 1723605, 19063207, 108468169, 1374019539, 8920711325, 127336119839, 928899673425, 14751357906571, 119445766884325, 2088674728868631, 18588486479073881, 354892573941671363, 3443175067395538605
Offset: 0

Views

Author

Alois P. Heinz, Jul 28 2017

Keywords

Comments

All terms are odd.

Examples

			a(3) = 3: 123, 12|3, 3|12.
a(4) = 5: 1234, 124|3, 3|124, 12|34, 34|12.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m, t) option remember; `if`(n=0, m!,
          add(b(n-1, max(m, j), 1-t), j=1..m+1-t))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, m_, t_]:=b[n, m, t]=If[n==0, m!, Sum[b[n - 1, Max[m, j], 1 - t], {j, m + 1 - t}]]; Table[b[n, 0, 0], {n, 0, 50}] (* Indranil Ghosh, Jul 30 2017 *)
  • PARI
    { A290384(n) = (n==0) + sum(m=0,n, sum(k=1,m+1, stirling(m,k-1,2)*(k-1)! * stirling(n-m,k,2)*k! * (-1)^(m+k+1))); } \\ Max Alekseyev, Sep 28 2021
    
  • PARI
    { A290384(n) = polcoef(1 + sum(k=1,n, (-1)^(k-1) / binomial(-1/x-1,k-1) / binomial(1/x-1,k) + O(x^(n+1)) ), n); } \\ Max Alekseyev, Sep 23 2021

Formula

For n>=1, a(n) = Sum_{m=0..n} Sum_{k=1..m+1} (-1)^(m+k+1) * S(m,k-1) * (k-1)! * S(n-m,k) * k! = Sum_{m=0..n} Sum_{k=1..m+1} (-1)^(m+k+1) * A019538(m,k-1) * A019538(n-m,k). - Max Alekseyev, Sep 28 2021
G.f.: 1 + Sum_{k >= 1} (-1)^(k-1) / binomial(-1/x-1,k-1) / binomial(1/x-1,k). - Max Alekseyev, Sep 23 2021

A363587 Number of partitions of [n] such that in the set of smallest block elements there is an equal number of odd and even terms.

Original entry on oeis.org

1, 0, 1, 2, 6, 16, 63, 246, 1201, 5632, 30776, 166800, 1032537, 6404960, 44200745, 305485130, 2305218366, 17475547664, 143075155975, 1179769331662, 10409877747841, 92570178170528, 873953428860952, 8318955989166944, 83562716138732321, 846729015766650672
Offset: 0

Views

Author

Alois P. Heinz, Jun 10 2023

Keywords

Examples

			a(0) = 1: () the empty partition.
a(1) = 0.
a(2) = 1: 1|2.
a(3) = 2: 13|2, 1|23.
a(4) = 6: 123|4, 134|2, 13|24, 14|23, 1|234, 1|2|3|4.
a(5) = 16: 1235|4, 123|45, 1345|2, 134|25, 135|24, 13|245, 13|2|4|5, 145|23, 14|235, 15|234, 1|2345, 1|23|4|5, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, x, y) option remember; `if`(abs(x-y)>2*n, 0,
         `if`(n=0, 1, `if`(y=0, 0, b(n-1, y-1, x+1)*y)+
            b(n-1, y, x)*x + b(n-1, y, x+1)))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, x_, y_] := b[n, x, y] = If[Abs[x - y] > 2n, 0, If[n == 0, 1, If[y == 0, 0, b[n-1, y-1, x+1]*y] + b[n-1, y, x]*x + b[n-1, y, x+1]]];
    a[n_] := b[n, 0, 0];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 18 2023, after Alois P. Heinz *)
Showing 1-5 of 5 results.