A290466 Unitary Zumkeller numbers: numbers k whose unitary divisors can be partitioned into two disjoint subsets whose sums are both usigma(k)/2.
6, 30, 42, 60, 66, 70, 78, 90, 102, 114, 138, 150, 174, 186, 210, 222, 246, 258, 282, 294, 318, 330, 354, 366, 390, 402, 420, 426, 438, 462, 474, 498, 510, 534, 546, 570, 582, 606, 618, 630, 642, 654, 660, 678, 690, 714, 726, 750, 762, 770, 780, 786, 798, 822, 834, 840, 858, 870, 894, 906
Offset: 1
Keywords
Examples
The set of unitary divisors of 30 is {1,2,3,5,6,10,15,30}. It can be partitioned into two disjoint subsets with equal sums of elements: {5,6,10,15} and {1,2,3,30}, therefore 30 is in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Bhabesh Das, On unitary Zumkeller numbers, Notes on Number Theory and Discrete Mathematics, Vol. 30, No. 2 (2024), pp. 436-442.
- Eric Weisstein's World of Mathematics, Unitary Divisor Function.
- Wikipedia, Unitary divisor.
Programs
-
Mathematica
uDiv[n_]:=Block[{d=Divisors[n]},Select[d,GCD[#,n/#]==1&]];uZNQ[n_]:=Module[{d=uDiv[n],t,ds,x},ds=Plus@@d;If[Mod[ds,2]>0,False,t=CoefficientList[Product[1+x^i,{i,d}],x];t[[1+ds/2]]>0]];Select[Range[10^3],uZNQ] (* combined from the code by Robert G. Wilson v at A034448 and T. D. Noe at A083207 *)
Comments