A335202 Unitary Zumkeller numbers (A290466) whose set of unitary divisors can be partitioned into two disjoint sets of equal sum in a single way.
6, 60, 70, 90, 3230, 3770, 4030, 4510, 5170, 5390, 5830, 50388, 87360, 269990, 442365, 544310, 592670, 740870, 1341230, 1772870, 4173070, 4199030, 5719266, 5728842, 5743206, 34473582, 624032630, 812851182, 1109686930, 1113445430, 2280959890, 55157757606
Offset: 1
Keywords
Examples
60 is a term since there is only one partition of its set of unitary divisors, {1, 3, 4, 5, 12, 15, 20, 60}, into 2 disjoint sets whose sum is equal: 1 + 3 + 4 + 5 + 12 + 15 + 20 = 60.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..48 (terms < 10^12)
Programs
-
Mathematica
uzQ[n_] := Module[{d = Select[Divisors[n], CoprimeQ[#, n/#] &], sum, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] == 2]]; Select[Range[6000], uzQ]
Extensions
Terms a(19) and beyond from Giovanni Resta, May 30 2020
Comments