A290478 Triangle read by rows in which row n lists the sum of the divisors of each divisor of n.
1, 1, 3, 1, 4, 1, 3, 7, 1, 6, 1, 3, 4, 12, 1, 8, 1, 3, 7, 15, 1, 4, 13, 1, 3, 6, 18, 1, 12, 1, 3, 4, 7, 12, 28, 1, 14, 1, 3, 8, 24, 1, 4, 6, 24, 1, 3, 7, 15, 31, 1, 18, 1, 3, 4, 12, 13, 39, 1, 20, 1, 3, 7, 6, 18, 42, 1, 4, 8, 32, 1, 3, 12, 36, 1, 24, 1, 3, 4, 7
Offset: 1
Examples
Row 6 is (a(11), a(12), a(13), a(14)) = (1, 3, 4, 12) because sigma(A027750(11))= sigma(1) = 1, sigma(A027750(12))= sigma(2) = 3, sigma(A027750(13))= sigma(3) = 4 and sigma(A027750(14)) = sigma(6) = 12. Triangle begins: 1; 1, 3; 1, 4; 1, 3, 7; 1, 6; 1, 3, 4, 12; 1, 8; 1, 3, 7, 15; 1, 4, 13; 1, 3, 6, 18; ...
Links
- Michel Marcus, Table of n, a(n) for n = 1..10006 (rows 1 to 1358, flattened).
Programs
-
Magma
[[SumOfDivisors(d): d in Divisors(n)]: n in [1..20]]; // Vincenzo Librandi, Sep 08 2017
-
Maple
with(numtheory):nn:=100: for n from 1 to nn do: d1:=divisors(n):n1:=nops(d1): for i from 1 to n1 do: s:=sigma(d1[i]): printf(`%d, `,s): od: od:
-
Mathematica
Array[DivisorSigma[1, Divisors@ #] &, 24] // Flatten (* Michael De Vlieger, Aug 07 2017 *)
-
PARI
row(n) = apply(sigma, divisors(n)); \\ Michel Marcus, Dec 27 2021
Formula
a(n) = sigma(A027750(n)).
Comments