A290480 Product of proper unitary divisors of n.
1, 1, 1, 1, 1, 6, 1, 1, 1, 10, 1, 12, 1, 14, 15, 1, 1, 18, 1, 20, 21, 22, 1, 24, 1, 26, 1, 28, 1, 27000, 1, 1, 33, 34, 35, 36, 1, 38, 39, 40, 1, 74088, 1, 44, 45, 46, 1, 48, 1, 50, 51, 52, 1, 54, 55, 56, 57, 58, 1, 216000, 1, 62, 63, 1, 65, 287496, 1, 68, 69, 343000, 1, 72, 1, 74, 75, 76, 77, 474552, 1, 80
Offset: 1
Keywords
Examples
a(12) = 12 because 12 has 6 divisors {1, 2, 3, 4, 6, 12} among which 3 are proper unitary {1, 3, 4} and 1*3*4 = 12.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Maple
with(numtheory): a:= n-> mul(d, d=select(x-> igcd(x, n/x)=1, divisors(n) minus {n})): seq(a(n), n=1..80); # Alois P. Heinz, Aug 03 2017
-
Mathematica
Table[Product[d, {d, Select[Divisors[n], GCD[#, n/#] == 1 &]}]/n, {n, 80}] Table[n^(2^(PrimeNu[n] - 1) - 1), {n, 80}]
-
PARI
A290480(n) = if(1==n,n,n^(2^(omega(n)-1)-1)); \\ Antti Karttunen, Aug 06 2018
-
Python
from sympy import divisors, gcd, prod def a(n): return prod(d for d in divisors(n) if gcd(d, n//d) == 1)//n print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Aug 04 2017