A290506 Decimal expansion of 1 - 1/e^(1/2).
3, 9, 3, 4, 6, 9, 3, 4, 0, 2, 8, 7, 3, 6, 6, 5, 7, 6, 3, 9, 6, 2, 0, 0, 4, 6, 5, 0, 0, 8, 8, 1, 9, 5, 4, 6, 5, 5, 8, 0, 8, 1, 8, 6, 4, 5, 1, 2, 8, 1, 3, 0, 4, 4, 3, 1, 7, 1, 0, 7, 8, 4, 1, 2, 6, 4, 9, 4, 3, 4, 8, 0, 5, 8, 6, 2, 5, 1, 5, 7, 6, 0, 0, 1, 3, 5, 2, 3, 8, 8, 4, 9, 2, 0, 1, 0, 5, 4, 3, 9, 7, 3, 5, 7, 6
Offset: 0
Examples
0.3934693402873665763962004650088195465580818645128130443171078412649434...
References
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 225.
- C. L. Siegel, Zu zwei Bemerkungen Kummers. Nachr. Akad. d. Wiss. Göttingen, Math. Phys. Kl., II, 1964, 51-62. Reprinted in Gesammelte Abhandlungen (edited by K. Chandrasekharan and H. Maas), Vol. III, 436-442. Springer-Verlag, Berlin, 1966.
Crossrefs
Cf. A092605.
Programs
-
Magma
SetDefaultRealField(RealField(105)); n:=1-Exp(-1)^(1/2); Reverse(Intseq(Floor(10^105*n)));
-
Mathematica
RealDigits[N[1 - 1/E^(1/2), 105]][[1]]
-
PARI
1-exp(-1)^(1/2)
Formula
Equals Integral_{x = 0..1/2} exp(-x) dx.
From Amiram Eldar, Aug 24 2020: (Start)
Equals Sum_{k>=1} (-1)^(k+1)/(2^k * k!).
Equals 1 - A092605. (End)
Comments