cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A092605 Decimal expansion of e^(-1/2) or 1/sqrt(e).

Original entry on oeis.org

6, 0, 6, 5, 3, 0, 6, 5, 9, 7, 1, 2, 6, 3, 3, 4, 2, 3, 6, 0, 3, 7, 9, 9, 5, 3, 4, 9, 9, 1, 1, 8, 0, 4, 5, 3, 4, 4, 1, 9, 1, 8, 1, 3, 5, 4, 8, 7, 1, 8, 6, 9, 5, 5, 6, 8, 2, 8, 9, 2, 1, 5, 8, 7, 3, 5, 0, 5, 6, 5, 1, 9, 4, 1, 3, 7, 4, 8, 4, 2, 3, 9, 9, 8, 6, 4, 7, 6, 1, 1, 5, 0, 7, 9, 8, 9, 4, 5, 6, 0, 2, 6, 4, 2, 3
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 22 2004

Keywords

Comments

For x = e^(-1/2), the largest prime factor of a random integer n is equally likely to be above or below n^x. - Charles R Greathouse IV, May 25 2009
Siegel's conjecture: this constant gives the density of regular primes among all the primes (see Ribenboim and Siegel). - Stefano Spezia, Apr 22 2025

Examples

			0.6065306597126334...
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 225.
  • C. L. Siegel, Zu zwei Bemerkungen Kummers. Nachr. Akad. d. Wiss. Göttingen, Math. Phys. Kl., II, 1964, 51-62. Reprinted in Gesammelte Abhandlungen (edited by K. Chandrasekharan and H. Maas), Vol. III, 436-442. Springer-Verlag, Berlin, 1966.

Crossrefs

Programs

Formula

Equals Sum_{k>=0} (-1)^k/(2^k * k!) = Sum_{k>=0} (-1)^k/A000165(k). - Amiram Eldar, Aug 15 2020
From Peter Bala, Jan 16 2022; (Start)
Equals 16*Sum_{n >= 0} (-1)^n*n^2/((4*n^2 - 1)*(4*n^2 - 9)*(2^n)*n!).
Equals 8*Sum_{n >= 0} (-1)^n/(p(n)*p(n+1)*(2^n)*n!), where p(n) = 4*n^2 + 8*n + 1.
Equals 48*Sum_{n >= 0} (-1)^n/(q(n)*q(n+1)*(2^n)*n!), where q(n) = 8*n^3 + 36*n^2 + 34*n + 1. (End)
Equals i^(i/Pi), where i denotes the imaginary unit. - Stefano Spezia, Mar 01 2025
Equals 1 - A290506. - Amiram Eldar, Apr 22 2025

A120337 Euler-irregular primes p dividing E(2k) for some 2k < p-1.

Original entry on oeis.org

19, 31, 43, 47, 61, 67, 71, 79, 101, 137, 139, 149, 193, 223, 241, 251, 263, 277, 307, 311, 349, 353, 359, 373, 379, 419, 433, 461, 463, 491, 509, 541, 563, 571, 577, 587, 619, 677, 691, 709, 739, 751, 761, 769, 773, 811, 821, 877, 887, 907, 929, 941, 967, 971, 983
Offset: 1

Views

Author

Stefan Krämer, Jun 22 2006

Keywords

Comments

Conjecture (Ernvall and Metsänkylä, 1978): The asymptotic density of this sequence within the primes is 1 - 1/sqrt(e) = 0.393469... (A290506), the same as the corresponding conjectured density of the irregular primes (A000928). - Amiram Eldar, Dec 06 2022

Examples

			a(1) = 19 because 19 divides E(10) = -19*2659 and 10 + 1 < 19.
		

Crossrefs

Programs

  • Maple
    A120337_list := proc(bound)
    local ae, F, p, m, maxp; F := NULL;
    for m from 2 by 2 to bound do
      p := nextprime(m+1);
      ae := abs(euler(m));
      maxp := min(ae, bound);
      while p <= maxp do
          if ae mod p = 0
          then F := F,p fi;
          p := nextprime(p);
       od;
    od;
    sort([F]) end: # Peter Luschny, Apr 25 2011
  • Mathematica
    fQ[p_] := Block[{k = 1}, While[ 2k +1 < p && Mod[ EulerE[ 2k], p] != 0, k++]; p > 2k +1]; Select[ Prime@ Range@ 168, fQ@# &] (* Robert G. Wilson v, Dec 10 2014 *)

Formula

The (trivial) divisors of E(2n) are given by the theorem of Sylvester (1861): Let p prime with p=1 (mod 4), p-1|2n, p^k|2n then p^{k+1} | E(2n).

Extensions

Terms 251 through 983 from Peter Luschny, Apr 25 2011

A105018 Indices of the irregular primes.

Original entry on oeis.org

12, 17, 19, 26, 27, 32, 35, 37, 51, 55, 56, 58, 61, 62, 63, 64, 69, 71, 75, 77, 79, 80, 82, 84, 89, 90, 91, 94, 99, 100, 101, 102, 106, 107, 108, 111, 112, 113, 114, 115, 118, 119, 120, 122, 123, 124, 125, 129, 133, 134, 135, 137, 139, 140, 141, 142, 144, 146, 151
Offset: 1

Views

Author

Robert G. Wilson v, Mar 31 2005

Keywords

References

  • Carl Ludwig Siegel, Zu zwei Bemerkungen Kummers, Nachrichten der Akademie der Wissenschaften in Göttingen, 1964, pp. 51-57.

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{ p = Prime[ n ], k = 1}, While[ 2k <= p - 3 && Mod[ Numerator[ BernoulliB[ 2k]], p] != 0, k++ ]; If[ 2k != p - 1, True, False]]; Select[ Range[2, 151], fQ[ # ] &]

Formula

Conjecture (Siegel, 1964): Limit_{n -> oo} a(n)/n = 1 - 1 / sqrt(e) (A290506). Of the 788060 primes < 12000000, 310443 are irregular.
A000040(a(n)) = A000928(n). - Amiram Eldar, Mar 06 2019

A306486 Number of squares in the interval [e^(n-1), e^n).

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 21, 36, 58, 96, 159, 262, 431, 712, 1172, 1934, 3189, 5256, 8667, 14289, 23559, 38841, 64039, 105583, 174076, 287003, 473188, 780155, 1286258, 2120681, 3496412, 5764609, 9504233, 15669832, 25835185, 42595018, 70227313, 115785266
Offset: 0

Views

Author

Alexei Kourbatov, Feb 18 2019

Keywords

Comments

The lower endpoint e^(n-1) is included; the upper endpoint is not included. The terms a(0) to a(8) coincide with the Fibonacci numbers.

Examples

			Between exp(2) and exp(3) there are two squares, namely, 9 and 16; therefore, a(3)=2.
		

Crossrefs

Programs

  • Maple
    a:= n-> (f-> f(n)-f(n-1))(i-> ceil(exp(i/2))):
    seq(a(n), n=0..44);  # Alois P. Heinz, Feb 18 2019
  • PARI
    a(n)=ceil(sqrt(exp(n)))-ceil(sqrt(exp(n-1)));
    for(n=0,50,print1(a(n)", "))

Formula

a(n) = ceiling(sqrt(exp(n))) - ceiling(sqrt(exp(n-1))).
From Alois P. Heinz, Feb 19 2019: (Start)
Lim_{n->oo} a(n+1)/a(n) = sqrt(e) = 1.64872127... = A019774.
a(n) = A005181(n+1) - A005181(n). (End)
a(n) = (1-1/sqrt(e))*e^(n/2)+O(1) ~ 0.39346934...*e^(n/2) ~ A290506*e^(n/2). - Alexei Kourbatov, Feb 20 2019
Showing 1-4 of 4 results.