cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Stefan Krämer

Stefan Krämer's wiki page.

Stefan Krämer has authored 4 sequences.

A130673 Smallest m of r=1,2,3,... where the generalized Euler constants (of D. H. Lehmer) E(r,m) change their sign: E(r,m) > 0 and E(r+1,m) < 0.

Original entry on oeis.org

2, 3, 6, 9, 13, 17, 21, 25, 29, 34, 39, 43, 48, 53, 58, 63, 68
Offset: 1

Author

Stefan Krämer, Jun 28 2007

Keywords

Comments

Maple produces the following table:
...m................|..r
...2,...............|..1
...3,.4,.5..........|..2
...6,.7,.8..........|..3
...9,10,11,12.......|..4
..13,14,15,16.......|..5
..17,18,19,20.......|..6
..21,22,23,24.......|..7
..25,26,27,28.......|..8
..29,30,31,32,33....|..9
..34,35,36,37,38....|.10
..39,40,41,42.......|.11
..43,44,45,46,47....|.12
..48,49,50,51,52....|.13
..53,54,55,56,57....|.14
..58,59,60,61,62....|.15
..63,64,65,66,67....|.16
..68,69,70,71,72,73.|.17

References

  • Stefan Kraemer, Eulers constant and related numbers, preprint, 2005.

Formula

E(r,m) = lim_{n->oo} (H_{r,m}(n) - log n / m); E(r,m) = -1/m * (log m + Psi(r/m))

A120337 Euler-irregular primes p dividing E(2k) for some 2k < p-1.

Original entry on oeis.org

19, 31, 43, 47, 61, 67, 71, 79, 101, 137, 139, 149, 193, 223, 241, 251, 263, 277, 307, 311, 349, 353, 359, 373, 379, 419, 433, 461, 463, 491, 509, 541, 563, 571, 577, 587, 619, 677, 691, 709, 739, 751, 761, 769, 773, 811, 821, 877, 887, 907, 929, 941, 967, 971, 983
Offset: 1

Author

Stefan Krämer, Jun 22 2006

Keywords

Comments

Conjecture (Ernvall and Metsänkylä, 1978): The asymptotic density of this sequence within the primes is 1 - 1/sqrt(e) = 0.393469... (A290506), the same as the corresponding conjectured density of the irregular primes (A000928). - Amiram Eldar, Dec 06 2022

Examples

			a(1) = 19 because 19 divides E(10) = -19*2659 and 10 + 1 < 19.
		

Crossrefs

Programs

  • Maple
    A120337_list := proc(bound)
    local ae, F, p, m, maxp; F := NULL;
    for m from 2 by 2 to bound do
      p := nextprime(m+1);
      ae := abs(euler(m));
      maxp := min(ae, bound);
      while p <= maxp do
          if ae mod p = 0
          then F := F,p fi;
          p := nextprime(p);
       od;
    od;
    sort([F]) end: # Peter Luschny, Apr 25 2011
  • Mathematica
    fQ[p_] := Block[{k = 1}, While[ 2k +1 < p && Mod[ EulerE[ 2k], p] != 0, k++]; p > 2k +1]; Select[ Prime@ Range@ 168, fQ@# &] (* Robert G. Wilson v, Dec 10 2014 *)

Formula

The (trivial) divisors of E(2n) are given by the theorem of Sylvester (1861): Let p prime with p=1 (mod 4), p-1|2n, p^k|2n then p^{k+1} | E(2n).

Extensions

Terms 251 through 983 from Peter Luschny, Apr 25 2011

A109997 Primes where the arithmetic mean of the fractional parts of p/1,p/2,..., p/p is less than 1-gamma=0.422784...

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 41, 43, 61, 67, 73, 79, 97, 101, 103, 109, 113, 127, 137, 151, 157, 163, 173, 181, 193, 197, 199, 211, 229, 233, 241, 257, 271, 277, 281, 283, 307, 313, 331, 337, 353, 367, 373, 379, 397, 401, 409, 421, 433, 443, 457, 463
Offset: 1

Author

Stefan Krämer, Sep 01 2005

Keywords

References

  • S. R. Finch. Mathematical Constants. Cambridge University Press, 2003 ISBN 0-521-81802-2 p. 29
  • Stefan Kraemer. Eulers constant and related numbers, preprint, 2005.

Crossrefs

Programs

  • Mathematica
    With[{c=1-EulerGamma},Select[Prime[Range[100]],Mean[FractionalPart/@(#/ Range[#])]Harvey P. Dale, Sep 19 2020 *)

A109996 Primes p such that the arithmetic mean of the fractional parts of p/1, p/2, ..., p/p is larger than 1 - gamma = 0.422784...

Original entry on oeis.org

23, 47, 53, 59, 71, 83, 89, 107, 131, 139, 149, 167, 179, 191, 223, 227, 239, 251, 263, 269, 293, 311, 317, 347, 349, 359, 383, 389, 419, 431, 439, 449, 461, 467, 479, 491, 503, 509, 557, 569, 571, 587, 593, 599, 607, 619, 643, 647, 659, 683, 701, 719, 727
Offset: 1

Author

Stefan Krämer, Sep 01 2005

Keywords

References

  • S. R. Finch. Mathematical Constants. Cambridge University Press, 2003 ISBN 0-521-81802-2 p. 29.
  • Stefan Kraemer. Eulers constant and related numbers, preprint, 2005.

Crossrefs

Cf. A153810 (1-gamma).

Programs

  • Maple
    H:= proc(n) H(n):= 1/n+`if`(n=1, 0, H(n-1)) end:
    a:= proc(n) option remember; local c, p; Digits := 1000;
          c:= evalf(1-gamma);
          p:=`if`(n=1, 1, a(n-1));
          do p:= nextprime(p);
             if H(p)-add(iquo(p, i), i=1..p)/p>c
             then return p fi
          od
        end:
    seq(a(n), n=1..70);  # Alois P. Heinz, Jun 14 2013
  • Mathematica
    Reap[For[p = 2, p < 1000, p = NextPrime[p], If[Mean[FractionalPart /@ (p/Range[p])] > 1-EulerGamma, Sow[p]]]][[2, 1]] (* Jean-François Alcover, Dec 28 2021 *)
  • PARI
    lista(nn) = {forprime(p=2, nn, if (sum (i=1, p, p/i - floor(p/i))/p > 1- Euler, print1(p, ", ")););} \\ Michel Marcus, Jun 14 2013