cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290559 One of the two successive approximations up to 7^n for the 7-adic integer sqrt(2). These are the numbers congruent to 4 mod 7 (except for the initial 0).

Original entry on oeis.org

0, 4, 39, 235, 235, 12240, 79468, 667713, 3961885, 15491487, 15491487, 15491487, 7924798459, 77131234464, 561576286499, 4630914723593, 23621160763365, 189785813611370, 1352938383547405, 4609765579368303, 4609765579368303, 403571097067428308
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2017

Keywords

Comments

x = ...450454,
x^2 = ...000002 = 2.

Examples

			a(1) = (    4)_7 = 4,
a(2) = (   54)_7 = 39,
a(3) = (  454)_7 = 235,
a(4) = (  454)_7 = 235,
a(5) = (50454)_7 = 12240.
		

Crossrefs

Programs

  • PARI
    a(n) = if (n==0, 0, 7^n - truncate(sqrt(2+O(7^n)))); \\ Michel Marcus, Aug 06 2017

Formula

If n > 0, a(n) = 7^n - A290557(n).
a(0) = 0 and a(1) = 4, a(n) = a(n-1) + 6 * (a(n-1)^2 - 2) mod 7^n for n > 1.
a(n) == 2*T(7^n, 2) (mod 7^n) == (2 + sqrt(3))^(7^n) + (2 - sqrt(3))^(7^n) (mod 7^n), where T(n, x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Dec 03 2022