cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290569 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 - x/(1 - 2^k*x/(1 - 3^k*x/(1 - 4^k*x/(1 - 5^k*x/(1 - ...)))))).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 5, 15, 14, 1, 1, 9, 61, 105, 42, 1, 1, 17, 297, 1385, 945, 132, 1, 1, 33, 1585, 24273, 50521, 10395, 429, 1, 1, 65, 8865, 485729, 3976209, 2702765, 135135, 1430, 1, 1, 129, 50881, 10401345, 372281761, 1145032281, 199360981, 2027025, 4862
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 08 2017

Keywords

Examples

			G.f. of column k: A_k(x) = 1 + x + (2^k + 1)*x^2 + (2^(k+1) + 4^k + 6^k + 1)*x^3 + ...
Square array begins:
:  1,    1,      1,        1,          1,            1,  ...
:  1,    1,      1,        1,          1,            1,  ...
:  2,    3,      5,        9,         17,           33,  ...
:  5,   15,     61,      297,       1585,         8865,  ...
: 14,  105,   1385,    24273,     485729,     10401345,  ...
: 42,  945,  50521,  3976209,  372281761,  38103228225,  ...
		

Crossrefs

Columns k=0-4 give: A000108, A001147, A000364, A216966, A227887.
Main diagonal gives A291333.
Cf. A000051 (row 2).

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-i^k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 9}, {n, 0, j}] // Flatten

Formula

G.f. of column k: 1/(1 - x/(1 - 2^k*x/(1 - 3^k*x/(1 - 4^k*x/(1 - 5^k*x/(1 - ...)))))), a continued fraction.