A290710 Number of irredundant sets in the n-crown graph.
24, 77, 178, 373, 724, 1331, 2364, 4127, 7186, 12625, 22558, 41153, 76680, 145607, 280792, 547867, 1078006, 2133461, 4238634, 8442221, 16841500, 33630907, 67199188, 134323703, 268559034, 537014201, 1073907094, 2147673337, 4295184016, 8590181135
Offset: 3
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- Eric Weisstein's World of Mathematics, Crown Graph
- Eric Weisstein's World of Mathematics, Irredundant Set
- Index entries for linear recurrences with constant coefficients, signature (7, -20, 30, -25, 11, -2).
Programs
-
Magma
[24] cat [2^(n+1)+n*(n^3-2*n^2+3*n+2)/4-1: n in [4..40]]; // Vincenzo Librandi, Mar 17 2018
-
Mathematica
Table[If[n == 3, 24, 2^(n + 1) + n*(n^3 - 2 n^2 + 3 n + 2)/4 - 1], {n, 3, 20}] Join[{24}, LinearRecurrence[{7, -20, 30, -25, 11, -2}, {77, 178, 373, 724, 1331, 2364}, 20]] CoefficientList[Series[(24 - 91 x + 119 x^2 - 53 x^3 - 37 x^4 + 44 x^5 - 12 x^6)/((-1 + x)^5 (-1 + 2 x)), {x, 0, 20}], x]
-
PARI
a(n)=if(n<4, [4,9,24][n], 2^(n+1) + n*(n^3 - 2*n^2 + 3*n + 2)/4 - 1); \\ Andrew Howroyd, Aug 11 2017
Formula
a(n) = 2^(n+1) + n*(n^3 - 2*n^2 + 3*n + 2)/4 - 1 for n > 3. - Andrew Howroyd, Aug 11 2017
a(n) = 7*a(n-1) - 20*a(n-2) + 30*a(n-3) - 25*a(n-4) + 11*a(n-5) - 2*a(n-6) for n > 9.
G.f.: (x^3 (24 - 91 x + 119 x^2 - 53 x^3 - 37 x^4 + 44 x^5 - 12 x^6))/((-1 + x)^5 (-1 + 2 x)).
Extensions
a(13)-a(32) from Andrew Howroyd, Aug 11 2017
Comments