cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290716 Number of minimal dominating sets in the n-triangular (Johnson) graph.

Original entry on oeis.org

1, 1, 1, 3, 15, 35, 225, 1197, 6881, 45369, 327375, 2460755, 19925367, 171368067, 1551364997, 14763620445, 147405166785, 1538113071857, 16732908859599, 189413984297187, 2226589748578775, 27130592749003275, 342118450334269917, 4458168165784234253, 59952936723606219009
Offset: 0

Views

Author

Eric W. Weisstein, Aug 09 2017

Keywords

Comments

A minimal dominating set on the triangular graph corresponds either with a minimal edge cover on the complete graph minus one vertex or with a perfect matching on the complete graph. Perfect matchings on the complete graph exists only for even n. - Andrew Howroyd, Aug 13 2017
Also the number of maximal irredundant sets in the n-triangular graph. - Eric W. Weisstein, Dec 31 2017

Crossrefs

Programs

  • Mathematica
    b[n_]:=n! Sum[1/k! (Binomial[k, n - k] 2^(k - n) (-1)^k + Sum[Binomial[k, j] Sum[j^(i - j)/(i - j)! Binomial[k - j, n - i - k + j] 2^(i - j + k - n) (-1)^(k - j), {i, j, n - k + j}], {j, k}]), {k, n}]; Join[{1, 1}, Table[n b[n - 1] + If[Mod[n, 2] == 0, (n - 1)!!, 0], {n, 2, 20}]] (* Eric W. Weisstein, Aug 14 2017 *)
    Range[0, 20]! CoefficientList[Series[Exp[x^2/2] + x Exp[x Exp[x] - (x + x^2/2)], {x, 0, 20}], x] (* Eric W. Weisstein, Apr 23 2018 *)
  • PARI
    \\ here b(n) is A053530, df(n) is (2*n-1)!! = A001147
    b(n)=polcoeff(serlaplace(exp(-x-1/2*x^2+x*exp(x+O(x^(n+1))))),n,x);
    df(n)=polcoeff(serlaplace((1-2*x+O(x^(n+1)))^(-1/2)),n,x);
    a(n) = n*b(n-1) + if(n%2==0, df(n/2), 0); \\ Andrew Howroyd, Aug 13 2017
    
  • PARI
    seq(n)={Vec(serlaplace(exp(x^2/2 + O(x*x^n)) + x*exp(x*exp(x + O(x^n)) - (x+x^2/2))))} \\ Andrew Howroyd, Apr 21 2018

Formula

a(n) = n*A053530(n-1) for n odd, a(n) = (n-1)!! + n*A053530(n-1) for n even. - Andrew Howroyd, Aug 13 2017
E.g.f.: exp(x^2/2) + x*exp(x*exp(x) - (x+x^2/2)). - Andrew Howroyd, Apr 21 2018

Extensions

a(8)-a(24) from formula by Andrew Howroyd, Aug 13 2017
a(0)-a(1) prepended by Andrew Howroyd, Apr 21 2018