cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A290847 Number of dominating sets in the n-triangular graph.

Original entry on oeis.org

1, 7, 57, 973, 32057, 2079427, 267620753, 68649126489, 35172776136145, 36025104013571583, 73784683970720501897, 302228664636911612364581, 2475873390079769597467385417, 40564787539999607393632514635067, 1329227699017403425105119604848703905
Offset: 2

Views

Author

Andrew Howroyd, Aug 12 2017

Keywords

Comments

A dominating set on the triangular graph corresponds with an edge cover on the complete graph with optionally one vertex removed.

Crossrefs

Programs

  • Mathematica
    b[n_]:=Sum[(-1)^(n - k)*Binomial[n, k]*2^Binomial[k, 2], {k, 0, n}]; a[n_]:=b[n] + n*b[n - 1]; Table[a[n], {n, 2, 20}] (* Indranil Ghosh, Aug 12 2017 *)
  • PARI
    \\ here b(n) is A006129
    b(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*2^binomial(k, 2));
    a(n) = b(n) + n*b(n-1);
    
  • Python
    from sympy import binomial
    def b(n): return sum((-1)**(n - k)*binomial(n, k)*2**binomial(k, 2) for k in range(n + 1))
    def a(n): return b(n) + n*b(n - 1)
    print([a(n) for n in range(2, 21)]) # Indranil Ghosh, Aug 13 2017

Formula

a(n) = A006129(n) + n * A006129(n-1).
a(n) = 2^binomial(n,2) - Sum_{k=2..n} binomial(n,k)*A006129(n-k).

A303227 Number of minimal total dominating sets in the n-triangular (Johnson) graph.

Original entry on oeis.org

1, 1, 0, 3, 12, 80, 840, 4032, 31976, 371016, 4354650, 55066880, 680003412, 9047989392, 132626606294, 2096065474440, 34991505975120, 607163217989312, 11006996786618994, 209218563659672064, 4168806234781798100, 86745911047924139760, 1876774293382882814382
Offset: 0

Views

Author

Eric W. Weisstein, Apr 20 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Range[0, 20]! CoefficientList[Series[Exp[x^3/2] + x Exp[x Exp[x^2 + x] - (x + x^2 + x^3 + x^4/2)], {x, 0, 20}], x] (* Eric W. Weisstein, Apr 23 2018 *)
  • PARI
    seq(n)={Vec(serlaplace(exp(x^3/2 + O(x*x^n)) + x*exp(x*exp(x^2+x + O(x^n)) - (x+x^2+x^3+x^4/2))))} \\ Andrew Howroyd, Apr 21 2018

Formula

E.g.f.: exp(x^3/2) + x*exp(x*exp(x^2+x) - (x+x^2+x^3+x^4/2)). - Andrew Howroyd, Apr 21 2018

Extensions

a(0)-a(1) prepended and a(8)-a(22) from Andrew Howroyd, Apr 21 2018

A298104 Number of connected dominating sets in the n-triangular graph.

Original entry on oeis.org

1, 7, 54, 918, 31072, 2053184, 266478640, 68560228400, 35159451505536, 36021118923496320, 73782296097354062336, 302225812400352055040512, 2475866621867539032536216576, 40564755669895936890639118713856, 1329227401230786888692092742930946048
Offset: 2

Views

Author

Eric W. Weisstein, Jan 12 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 2^Binomial[n, 2] - Sum[k Binomial[n, k] 2^((n - k) (n - k - 1)/2) a[k], {k, n - 1}]/n; Join[{1}, Table[a[n] + n a[n - 1], {n, 3, 20}]] (* Eric W. Weisstein, Jan 15 2018 *)
  • PARI
    b(n)={serlaplace(-x + log(sum(k=0, n, 2^binomial(k, 2)*x^k/k! + O(x*x^n))))}
    { my(n=20); Vec(b(n) + x*deriv(x*b(n))) } \\ Andrew Howroyd, Jan 14 2018

Formula

a(n) = A001187(n) + n*A001187(n-1) for n > 2. - Andrew Howroyd, Jan 14 2018

Extensions

a(8)-a(16) from Andrew Howroyd, Jan 14 2018

A323499 Number of minimum dominating sets in the n-triangular (Johnson) graph.

Original entry on oeis.org

1, 3, 15, 15, 195, 105, 2625, 945, 38745, 10395, 634095, 135135, 11486475, 2027025, 229053825, 34459425, 4996616625, 654729075, 118505962575, 13749310575, 3038597637075, 316234143225, 83802047954625, 7905853580625, 2474532170735625, 213458046676875
Offset: 2

Views

Author

Eric W. Weisstein, Jan 16 2019

Keywords

Crossrefs

Programs

  • PARI
    a(n)={my(m=(n+1)\2); ((2*m)!/(m!*2^m))*if(n%2, 1, 1 + n*(n/2-1))} \\ Andrew Howroyd, Sep 08 2019

Formula

a(n) = n!! for n odd.
a(n) = (n-1)!!*(1 + n*(n/2 - 1)) for n even. - Andrew Howroyd, Sep 08 2019

Extensions

Terms a(14) and beyond from Andrew Howroyd, Sep 08 2019
Showing 1-4 of 4 results.