cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290745 Maximum number of distinct Lyndon factors that can appear in words of length n over an alphabet of size 10.

Original entry on oeis.org

10, 11, 13, 16, 20, 25, 31, 38, 46, 55, 64, 74, 85, 97, 110, 124, 139, 155, 172, 190, 208, 227, 247, 268, 290, 313, 337, 362, 388, 415, 442, 470, 499, 529, 560, 592, 625, 659, 694, 730, 766, 803, 841, 880, 920, 961, 1003, 1046, 1090, 1135
Offset: 1

Views

Author

N. J. A. Sloane, Aug 11 2017

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(n+1,2)-(10-(n-10*Floor(n/10)))*Binomial(Floor(n/10)+1,2)-(n-10*Floor(n/10))*Binomial(Floor(n/10)+2,2)+ 10: n in [1..50]]; // Vincenzo Librandi, Oct 04 2017
  • Mathematica
    Table[(Binomial[n+1, 2] - (10 - (n-10 Floor[n/10])) Binomial[Floor[n/10]+1, 2]- (n-10 Floor[n/10]) Binomial[Floor[n/10]+2, 2]+10), {n, 60}] (* Vincenzo Librandi, Oct 04 2017 *)
  • PARI
    a(n)=(s->my(m=n\s, p=n%s); binomial(n+1, 2)-(s-p)*binomial(m+1, 2)-p*binomial(m+2, 2)+s)(10); \\ Andrew Howroyd, Aug 14 2017
    

Formula

a(n) = binomial(n+1,2) - (s-p)*binomial(m+1,2) - p*binomial(m+2,2) + s where s=10, m=floor(n/s), p=n-m*s. - Andrew Howroyd, Aug 14 2017
G.f.: x*(10 - 9*x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 - 10*x^10 + 10*x^11) / ((1 - x)^3*(1 + x)*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)) (conjectured). - Colin Barker, Oct 03 2017

Extensions

a(11)-a(50) from Andrew Howroyd, Aug 14 2017