cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290775 Number of 5-cycles in the n-triangular honeycomb bishop graph.

Original entry on oeis.org

0, 0, 2, 24, 138, 532, 1596, 4032, 8988, 18216, 34254, 60632, 102102, 164892, 256984, 388416, 571608, 821712, 1156986, 1599192, 2174018, 2911524, 3846612, 5019520, 6476340, 8269560, 10458630, 13110552, 16300494, 20112428, 24639792, 29986176, 36266032, 43605408, 52142706
Offset: 1

Views

Author

Eric W. Weisstein, Aug 10 2017

Keywords

Crossrefs

Cf. A034827 (3-cycles in the triangular honeycomb bishop graph), A051843 (4-cycles), A290779 (6-cycles).

Programs

  • Mathematica
    Table[2/5 Binomial[n + 1, 4] (8 - 7 n + 2 n^2), {n, 20}]
    LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 2, 24, 138, 532, 1596}, 20]
    CoefficientList[Series[-((2 (x^2 + 5 x^3 + 6 x^4))/(-1 + x)^7), {x, 0, 20}], x]
  • PARI
    a(n)=n*(2*n^5 - 11*n^4 + 20*n^3 - 5*n^2 - 22*n + 16)/60 \\ Charles R Greathouse IV, Aug 10 2017

Formula

a(n) = 2/5 * binomial(n + 1, 4)*(8 - 7*n + 2*n^2).
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: -((2 x (x^2 + 5 x^3 + 6 x^4))/(-1 + x)^7).