A290775 Number of 5-cycles in the n-triangular honeycomb bishop graph.
0, 0, 2, 24, 138, 532, 1596, 4032, 8988, 18216, 34254, 60632, 102102, 164892, 256984, 388416, 571608, 821712, 1156986, 1599192, 2174018, 2911524, 3846612, 5019520, 6476340, 8269560, 10458630, 13110552, 16300494, 20112428, 24639792, 29986176, 36266032, 43605408, 52142706
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Graph Cycle
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
Programs
-
Mathematica
Table[2/5 Binomial[n + 1, 4] (8 - 7 n + 2 n^2), {n, 20}] LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 2, 24, 138, 532, 1596}, 20] CoefficientList[Series[-((2 (x^2 + 5 x^3 + 6 x^4))/(-1 + x)^7), {x, 0, 20}], x]
-
PARI
a(n)=n*(2*n^5 - 11*n^4 + 20*n^3 - 5*n^2 - 22*n + 16)/60 \\ Charles R Greathouse IV, Aug 10 2017
Formula
a(n) = 2/5 * binomial(n + 1, 4)*(8 - 7*n + 2*n^2).
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: -((2 x (x^2 + 5 x^3 + 6 x^4))/(-1 + x)^7).