cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A034827 a(n) = 2*binomial(n,4).

Original entry on oeis.org

0, 0, 0, 0, 2, 10, 30, 70, 140, 252, 420, 660, 990, 1430, 2002, 2730, 3640, 4760, 6120, 7752, 9690, 11970, 14630, 17710, 21252, 25300, 29900, 35100, 40950, 47502, 54810, 62930, 71920, 81840, 92752, 104720, 117810, 132090, 147630, 164502, 182780
Offset: 0

Views

Author

Keywords

Comments

Also number of ways to insert two pairs of parentheses into a string of n-4 letters (allowing empty pairs of parentheses). E.g., there are 30 ways for 2 letters. Cf. A002415.
2,10,30,70, ... gives orchard crossing number of complete graph K_n. - Ralf Stephan, Mar 28 2003
If Y is a 2-subset of an n-set X then, for n>=4, a(n-1) is the number of 4-subsets and 5-subsets of X having exactly one element in common with Y. - Milan Janjic, Dec 28 2007
Middle column of table on p. 6 of Feder and Garber. - Jonathan Vos Post, Apr 23 2009
Number of pairs of non-intersecting lines when each of n points around a circle is joined to every other point by straight lines. A pair of lines is considered non-intersecting if the lines do not intersect in either the interior or the boundary of a circle. - Melvin Peralta, Feb 05 2016
From a(2), convolution of the oblong numbers (A002378) with the nonnegative numbers (A001477). - Bruno Berselli, Oct 24 2016
Also the number of 3-cycles in the n-triangular honeycomb bishop graph. - Eric W. Weisstein, Aug 10 2017

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea, 1965, p. 449.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

A diagonal of A088617.
Partial sums of A007290.
Cf. A051843 (4-cycles in the triangular honeycomb bishop graph), A290775 (5-cycles), A290779 (6-cycles).

Programs

Formula

a(n) = A096338(2*n-6) = 2*A000332(n), n>2. - R. J. Mathar, Nov 08 2010
G.f.: 2*x^4/(1-x)^5. - Colin Barker, Feb 29 2012
a(n) = Sum_{k=1..n-3} ( Sum_{i=1..k} i*(2*k-n+4) ). - Wesley Ivan Hurt, Sep 26 2013
E.g.f.: x^4*exp(x)/12. - G. C. Greubel, Feb 23 2017
From Amiram Eldar, Jul 19 2022: (Start)
Sum_{n>=4} 1/a(n) = 2/3.
Sum_{n>=4} (-1)^n/a(n) = 16*log(2) - 32/3. (End)

A051843 Partial sums of A002419.

Original entry on oeis.org

0, 1, 11, 51, 161, 406, 882, 1722, 3102, 5247, 8437, 13013, 19383, 28028, 39508, 54468, 73644, 97869, 128079, 165319, 210749, 265650, 331430, 409630, 501930, 610155, 736281, 882441, 1050931, 1244216, 1464936, 1715912, 2000152, 2320857, 2681427
Offset: 0

Views

Author

Barry E. Williams, Dec 13 1999

Keywords

Comments

5-dimensional form of octagonal-based pyramidal numbers. - Derek I. Thomas (dithom02(AT)louisville.edu), Jun 30 2007
Convolution of triangular numbers (A000217) and octagonal numbers (A000567). [Bruno Berselli, Jul 21 2015]
Also the number of 4-cycles in the (n+2)-triangular honeycomb bishop graph. - Eric W. Weisstein, Aug 10 2017

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • H. J. Ryser, Combinatorial Mathematics, Carus Mathematical Monographs No. 14, John Wiley and Sons, 1963, pp. 1-8.

Crossrefs

Cf. A093563 ((6, 1) Pascal, column m=5).
Cf. A034827 (3-cycles in the triangular honeycomb bishop graph), A290775 (5-cycles), A290779 (6-cycles).

Programs

  • Mathematica
    Join[{0}, Accumulate[LinearRecurrence[{5, -10, 10, -5, 1},{1, 10, 40, 110, 245}, 40]]] (* Harvey P. Dale, Nov 30 2014 *)
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 11, 51, 161, 406}, 40] (* Harvey P. Dale, Nov 30 2014 *)
    Table[(6 n - 1) Binomial[n + 3, 4]/5, {n, 0, 20}] (* Eric W. Weisstein, Aug 10 2017 *)

Formula

a(n) = C(n+3,4) * (6*n-1)/5
G.f.: x*(1+5*x)/(1-x)^6.
a(n) = n*(n+1)*(n+2)*(n+3)*(6n-1)/120. - Derek I. Thomas (dithom02(AT)louisville.edu), Jun 30 2007

Extensions

a(1) corrected by Gael Linder (linder.gael(AT)wanadoo.fr), Oct 31 2007
a(0) prepended by Joerg Arndt, Jun 26 2013

A290779 Number of 6-cycles in the n-triangular honeycomb bishop graph.

Original entry on oeis.org

0, 0, 1, 57, 486, 2360, 8394, 24354, 61104, 137412, 283635, 546403, 994422, 1725516, 2875028, 4625700, 7219152, 10969080, 16276293, 23645709, 33705430, 47228016, 65154078, 88618310, 118978080, 157844700, 207117495, 269020791, 346143942, 441484516, 558494760
Offset: 1

Views

Author

Eric W. Weisstein, Aug 10 2017

Keywords

Crossrefs

Cf. A034827 (3-cycles), A051843 (4-cycles), A290775 (5-cycles).

Programs

  • Mathematica
    Table[Binomial[n + 1, 4] (-62 + 11 n - 109 n^2 + 40 n^3)/70, {n, 20}]
    LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 0, 1, 57, 486, 2360, 8394, 24354}, 40]
    CoefficientList[Series[(x^2 + 49 x^3 + 58 x^4 + 12 x^5)/(-1 + x)^8, {x, 0, 20}], x]
  • PARI
    a(n)=n*(40*n^6 - 189*n^5 + 189*n^4 + 105*n^3 - 105*n^2 + 84*n - 124)/1680 \\ Charles R Greathouse IV, Aug 10 2017

Formula

a(n) = binomial(n + 1, 4)*(-62 + 11*n - 109*n^2 + 40*n^3)/70.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
G.f.: (x (x^2 + 49 x^3 + 58 x^4 + 12 x^5))/(-1 + x)^8.
Showing 1-3 of 3 results.