A290824 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(k*x)/(1 + LambertW(-x)).
1, 1, 1, 1, 2, 4, 1, 3, 7, 27, 1, 4, 12, 43, 256, 1, 5, 19, 71, 393, 3125, 1, 6, 28, 117, 616, 4721, 46656, 1, 7, 39, 187, 985, 7197, 69853, 823543, 1, 8, 52, 287, 1584, 11123, 105052, 1225757, 16777216, 1, 9, 67, 423, 2521, 17429, 159093, 1829291, 24866481, 387420489, 1, 10, 84, 601, 3928, 27525, 243256, 2740111, 36922928, 572410513, 10000000000
Offset: 0
Examples
E.g.f. of column k: A_k(x) = 1 + (k + 1)*x/1! + (k^2 + 2*k + 4)*x^2/2! + (k^3 + 3*k^2 + 12*k + 27)*x^3/3! + (k^4 + 4*k^3 + 24*k^2 + 108*k + 256)*x^4/4! + ... Square array begins: 1, 1, 1, 1, 1, 1, ... 1, 2, 3, 4, 5, 6, ... 4, 7, 12, 19, 28, 39, ... 27, 43, 71, 117, 187, 287, ... 256, 393, 616, 985, 1584, 2521, ... 3125, 4721, 7197, 11123, 17429, 27525, ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- N. J. A. Sloane, Transforms
Crossrefs
Programs
-
Mathematica
Table[Function[k, n!*SeriesCoefficient[Exp[k x]/(1 + LambertW[-x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten (* G. C. Greubel, Nov 09 2017 *)
Formula
E.g.f. of column k: exp(k*x)/(1 + LambertW(-x)).
A(n,k) = Sum_{j=0..n} binomial(n,j)*k^(n-j)*j^j. - Fabian Pereyra, Jul 16 2024
Comments