cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A290941 Number of dominating sets in the triangular honeycomb bishop graph.

Original entry on oeis.org

1, 5, 45, 801, 27825, 1888509, 251530965, 66071455065, 34377356632185, 35547790276600245, 73223899601462711325, 300932502371711624263185, 2469959282065905379932069825, 40511383384524208761581247597165, 1328271546538715856399886647330605925
Offset: 1

Views

Author

Eric W. Weisstein, Aug 14 2017

Keywords

Crossrefs

Cf. A290875 (minimal dominating sets).

Programs

  • PARI
    Collect(sig,v,r,x)={forstep(r=r, 1, -1, my(w=sig[r]+1); v=vector(#v, k, sum(j=1, k, binomial(#v-j,k-j)*v[j]*x^(k-j)*(1+x)^(w-#v+j-1))-v[k])); v[#v]}
    DomSetCount(sig,x)={my(v=[1]); my(total=Collect(sig,v,#sig,x)); forstep(r=#sig, 1, -1, my(w=sig[r]+1); total+=Collect(sig, vector(w,k,if(k<=#v,v[k])), r-1, x); v=vector(w, k, sum(j=1, min(k,#v), binomial(w-j, k-j)*v[j]*x^(k-j)*(1+x)^(j-1)))); total}
    a(n)=DomSetCount(Vecrev([1..n]),1); \\ Andrew Howroyd, Nov 05 2017

Extensions

Terms a(8) and beyond from Andrew Howroyd, Nov 05 2017

A304558 Number of minimal total dominating sets in the n-triangular honeycomb bishop graph.

Original entry on oeis.org

0, 2, 4, 36, 203, 1854, 18188, 214646, 2909712
Offset: 1

Views

Author

Eric W. Weisstein, May 14 2018

Keywords

Crossrefs

Extensions

a(7)-a(9) from Andrew Howroyd, May 19 2018
Showing 1-2 of 2 results.