A290889 Number of partitions of the set of odd numbers {1, 3, ..., 2*n-1} into two subsets such that the absolute difference of the sums of the two subsets is minimized.
1, 1, 1, 1, 2, 1, 5, 4, 13, 10, 38, 34, 118, 103, 380, 346, 1262, 1153, 4277, 3965, 14745, 13746, 51541, 48396, 182182, 171835, 650095, 615966, 2338706, 2223755, 8472697, 8082457, 30884150, 29543309, 113189168, 108545916, 416839177, 400623807, 1541726967
Offset: 1
Keywords
Examples
a(1) = 1: {}U{1} with difference 1. a(2) = 1: {1}U{3} with difference 2. a(3) = 1: {1,3}U{5} with difference 1. a(4) = 1 = A156700(2): {1,7}U{3,5} with difference 0. a(5) = 2: {1,3,9}U{5,7} and {1,5,7}U{3,9} with |difference|=1. a(6) = 1 = A156700(3): {1,3,5,9}U{7,11} with difference 0. a(7) = 5: {1,3,5,7,9}U{11,13}, {1,3,9,11}U{5,7,13}, {1,5,7,11}U{3,9,13}, {1,11,13}U{3,5,7,9}, {1,3,7,13}U{5,9,11} with |difference|=1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n>i^2, 0, `if`(n=i^2, 1, b(abs(n-2*i+1), i-1)+b(n+2*i-1, i-1))) end: a:= n-> `if`(n<5, 1, (t-> b(t, n)/(2-t))(irem(n, 2))): seq(a(n), n=1..50); # Alois P. Heinz, Aug 14 2017
-
Mathematica
b[n_, i_] := b[n, i] = If[n > i^2, 0, If[n == i^2, 1, b[Abs[n - 2i + 1], i - 1] + b[n + 2i - 1, i - 1]]]; a[n_] := If[n < 5, 1, b[#, n]/(2-#)&[Mod[n, 2]]]; Array[a, 50] (* Jean-François Alcover, Nov 14 2020, after Alois P. Heinz *)
Formula
a(n) ~ (3 - (-1)^n) * sqrt(3) * 2^(n - 5/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 18 2017
Comments