cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A156700 Number of partitions of the set of odd numbers {1, 3, 5, ..., 4*n-1} into two subsets with equal sum.

Original entry on oeis.org

0, 1, 1, 4, 10, 34, 103, 346, 1153, 3965, 13746, 48396, 171835, 615966, 2223755, 8082457, 29543309, 108545916, 400623807, 1484716135, 5522723344, 20612084010, 77164686511, 289688970195, 1090342139349, 4113620233260, 15553877949800, 58930127470164
Offset: 1

Views

Author

Wim Couwenberg (wim.couwenberg(AT)gmail.com), Feb 13 2009

Keywords

Comments

Also the number of 2 X 2n reduced magic rectangles with values 1..4n. In a magic rectangle all column sums are equal and also all row sums are equal. Reduced means up to row and column permutations. - Andrew Howroyd, Nov 22 2018

Examples

			For n=2: {1,7}U{3,5}. For n=3: {1,3,5,9}U{7,11}. For n=4: {1,3,13,15}U{5,7,9,11}, {1,5,11,15}U{3,7,9,13}, {1,7,9,15}U{3,5,11,13}, {3,5,9,15}U{1,7,11,13}.
From _Andrew Howroyd_, Nov 22 2018: (Start)
For n=3: The unique 2 X 6 reduced magic rectangle is:
    1  3  7  8  9 11
   12 10  6  5  4  2
(End)
		

Crossrefs

Cf. A290889.

Programs

  • Maple
    b:= proc() option remember; local i, j, t; `if`(args[1]=0, `if`(nargs=2, 1, b(args[t] $t=2..nargs)), add(`if`(args[j] -args[nargs] <0, 0, b(sort([seq(args[i] -`if`(i=j, args[nargs], 0), i=1..nargs-1)])[], args[nargs]-2)), j=1..nargs-1)) end: a:= n-> b((2*n^2)$2, 4*n-1)/2: seq(a(n), n=1..40); # Alois P. Heinz, Sep 06 2009
  • Mathematica
    Table[SeriesCoefficient[Product[(x^(2*k - 1) + 1/x^(2*k - 1)), {k, 1, 2*n}]/2, {x, 0, 0}], {n, 1, 30}] (* G. C. Greubel, Nov 22 2018 *)
  • PARI
    a(n)=polcoef(prod(k=1, 2*n, x^-(2*k-1) + x^(2*k-1)), 0)/2; \\ Andrew Howroyd, Nov 22 2018

Formula

a(n) ~ sqrt(3) * 2^(2*n-3) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 18 2017
a(n) = [x^0](Product_{k=1..2*n} x^-(2*k-1) + x^(2*k-1))/2. - Andrew Howroyd, Nov 22 2018

Extensions

Extended beyond a(18) by Alois P. Heinz, Sep 06 2009
Showing 1-1 of 1 results.