A292476
Number of solutions to +-1 +- 3 +- 5 +- 7 +- ... +- (4*n-1) = 0.
Original entry on oeis.org
1, 0, 2, 2, 8, 20, 68, 206, 692, 2306, 7930, 27492, 96792, 343670, 1231932, 4447510, 16164914, 59086618, 217091832, 801247614, 2969432270, 11045446688, 41224168020, 154329373022, 579377940390, 2180684278698, 8227240466520, 31107755899600
Offset: 0
For n=2 the 2 solutions are +1-3-5+7 = 0 and -1+3+5-7 = 0.
For n=3 the 2 solutions are +1+3+5-7+9-11 = 0 and -1-3-5+7-9+11 = 0.
-
a[n_] := SeriesCoefficient[Product[x^(2k - 1) + 1/x^(2k - 1), {k, 1, 2n}], {x, 0, 0}];
Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Mar 10 2023 *)
-
{a(n) = polcoeff(prod(k=1, 2*n, x^(2*k-1)+1/x^(2*k-1)), 0)}
A290889
Number of partitions of the set of odd numbers {1, 3, ..., 2*n-1} into two subsets such that the absolute difference of the sums of the two subsets is minimized.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 5, 4, 13, 10, 38, 34, 118, 103, 380, 346, 1262, 1153, 4277, 3965, 14745, 13746, 51541, 48396, 182182, 171835, 650095, 615966, 2338706, 2223755, 8472697, 8082457, 30884150, 29543309, 113189168, 108545916, 416839177, 400623807, 1541726967
Offset: 1
a(1) = 1: {}U{1} with difference 1.
a(2) = 1: {1}U{3} with difference 2.
a(3) = 1: {1,3}U{5} with difference 1.
a(4) = 1 = A156700(2): {1,7}U{3,5} with difference 0.
a(5) = 2: {1,3,9}U{5,7} and {1,5,7}U{3,9} with |difference|=1.
a(6) = 1 = A156700(3): {1,3,5,9}U{7,11} with difference 0.
a(7) = 5: {1,3,5,7,9}U{11,13}, {1,3,9,11}U{5,7,13}, {1,5,7,11}U{3,9,13},
{1,11,13}U{3,5,7,9}, {1,3,7,13}U{5,9,11} with |difference|=1.
-
b:= proc(n, i) option remember; `if`(n>i^2, 0,
`if`(n=i^2, 1, b(abs(n-2*i+1), i-1)+b(n+2*i-1, i-1)))
end:
a:= n-> `if`(n<5, 1, (t-> b(t, n)/(2-t))(irem(n, 2))):
seq(a(n), n=1..50); # Alois P. Heinz, Aug 14 2017
-
b[n_, i_] := b[n, i] = If[n > i^2, 0, If[n == i^2, 1, b[Abs[n - 2i + 1], i - 1] + b[n + 2i - 1, i - 1]]];
a[n_] := If[n < 5, 1, b[#, n]/(2-#)&[Mod[n, 2]]];
Array[a, 50] (* Jean-François Alcover, Nov 14 2020, after Alois P. Heinz *)
A292497
Number of solutions to 1^2 +- 3^2 +- 5^2 +- 7^2 +- ... +- (4*n-1)^2 = 0.
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 6, 0, 20, 5, 258, 62, 2510, 914, 24285, 16403, 263945, 222240, 3068971, 3241157, 35286928, 46638022, 426740187, 650095127, 5330192371, 9185814630, 67064945191, 129902075662, 864443143567, 1833530501143, 11336065334984, 25990268638322
Offset: 0
A300218
Number of solutions to 1 +- 3 +- 5 +- ... +- (2*n-1) == 0 mod n.
Original entry on oeis.org
1, 2, 2, 4, 4, 12, 10, 36, 30, 104, 94, 344, 316, 1172, 1096, 4132, 3856, 14572, 13798, 52432, 49940, 190652, 182362, 699416, 671092, 2581112, 2485534, 9586984, 9256396, 35791472, 34636834, 134221860, 130150588, 505290272, 490853416, 1908874584, 1857283156
Offset: 1
Solutions for n = 7:
----------------------------
1 +3 +5 +7 +9 +11 +13 = 49.
1 +3 +5 -7 +9 +11 +13 = 35.
1 +3 -5 +7 -9 +11 +13 = 21.
1 +3 -5 -7 -9 +11 +13 = 7.
1 -3 +5 +7 +9 -11 +13 = 21.
1 -3 +5 -7 +9 -11 +13 = 7.
1 -3 -5 +7 +9 +11 -13 = 7.
1 -3 -5 +7 -9 -11 +13 = -7.
1 -3 -5 -7 +9 +11 -13 = -7.
1 -3 -5 -7 -9 -11 +13 = -21.
-
b:= proc(n, i, m) option remember; `if`(i<1, `if`(n=0, 1, 0),
add(b(irem(n+j, m), i-2, m), j=[i, m-i]))
end:
a:= n-> b(n-1, 2*n-3, n):
seq(a(n), n=1..40); # Alois P. Heinz, Mar 01 2018
-
Table[With[{s = Range[1, (2 n - 1), 2]}, Count[Map[Total[s #] &, Take[Tuples[{-1, 1}, Length@ s], -2^(n - 1)]], ?(Divisible[#, n] &)]], {n, 22}] (* _Michael De Vlieger, Mar 01 2018 *)
A369343
a(n) is the constant term in expansion of Product_{k=1..n} (x^(2*k-1) + 1 + 1/x^(2*k-1)).
Original entry on oeis.org
1, 1, 1, 1, 3, 9, 21, 49, 117, 295, 761, 1993, 5261, 14025, 37699, 102151, 278587, 764145, 2106433, 5832863, 16217191, 45255167, 126708863, 355848715, 1002145705, 2829479797, 8007670701, 22711890561, 64547494347, 183790615881, 524239904367, 1497786769295
Offset: 0
-
b:= proc(n, i) option remember; `if`(n>i^2, 0, `if`(i=0, 1,
b(n, i-1)+b(n+2*i-1, i-1)+b(abs(n-2*i+1), i-1)))
end:
a:= n-> b(0, n):
seq(a(n), n=0..33); # Alois P. Heinz, Jan 21 2024
-
Table[Coefficient[Product[x^(2 k - 1) + 1 + 1/x^(2 k - 1), {k, 1, n}], x, 0], {n, 0, 30}]
A367087
Number of solutions to +- 1 +- 3 +- 5 +- 7 +- ... +- (2*n-1) = 0 or 1.
Original entry on oeis.org
1, 1, 0, 1, 2, 2, 2, 5, 8, 13, 20, 38, 68, 118, 206, 380, 692, 1262, 2306, 4277, 7930, 14745, 27492, 51541, 96792, 182182, 343670, 650095, 1231932, 2338706, 4447510, 8472697, 16164914, 30884150, 59086618, 113189168, 217091832, 416839177, 801247614, 1541726967, 2969432270
Offset: 0
-
b:= proc(n, i) option remember; `if`(n>i^2, 0,
`if`(i=0, 1, b(n+2*i-1, i-1)+b(abs(n-2*i+1), i-1)))
end:
a:=n-> b(irem(n, 2), n):
seq(a(n), n=0..40); # Alois P. Heinz, Jan 26 2024
-
b[n_, i_] := b[n, i] = If[n > i^2, 0,
If[i == 0, 1, b[n+2*i-1, i-1] + b[Abs[n-2*i+1], i-1]]];
a[n_] := b[Mod[n, 2], n];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 03 2025, after Alois P. Heinz *)
A369386
a(n) is the constant term in expansion of Product_{k=1..n} (x^(2*k-1) + 1/x^(2*k-1))^2.
Original entry on oeis.org
1, 2, 4, 8, 18, 48, 138, 428, 1392, 4652, 15884, 55124, 193724, 688008, 2465134, 8899700, 32342236, 118215780, 434314138, 1602935104, 5940303754, 22095769648, 82464791420, 308715131744, 1158949678600, 4362040367048, 16456820491806, 62223707844096
Offset: 0
-
Table[Coefficient[Product[(x^(2 k - 1) + 1/x^(2 k - 1))^2, {k, 1, n}], x, 0], {n, 0, 27}]
A369729
Number of solutions to +- 1 +- 3 +- 5 +- 7 +- ... +- (4*n-3) = 1.
Original entry on oeis.org
0, 1, 1, 2, 5, 13, 38, 118, 380, 1262, 4277, 14745, 51541, 182182, 650095, 2338706, 8472697, 30884150, 113189168, 416839177, 1541726967, 5724470097, 21330062502, 79733319862, 298922247363, 1123678419818, 4234465089737, 15993581636893, 60535561889465
Offset: 0
-
Table[Coefficient[Product[(x^(2 k - 1) + 1/x^(2 k - 1)), {k, 1, 2 n - 1}], x, 1], {n, 0, 27}]
Showing 1-8 of 8 results.
Comments