cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290912 a(n) = (1/6)*A290911(n).

Original entry on oeis.org

0, 1, 4, 16, 68, 287, 1208, 5088, 21432, 90273, 380236, 1601584, 6745996, 28414655, 119684720, 504121280, 2123397744, 8943915201, 37672461204, 158679314512, 668369521108, 2815224014047, 11857940853032, 49946562182048, 210378775263272, 886131640451169
Offset: 0

Views

Author

Clark Kimberling, Aug 18 2017

Keywords

Crossrefs

Programs

  • GAP
    a:=[0,1,4,16];; for n in [5..30] do a[n]:=4*a[n-1]+4*a[n-3]-a[n-4]; od; a; # Muniru A Asiru, Sep 12 2018
    
  • Magma
    I:=[0,1,4,16]; [n le 4 select I[n] else 4*Self(n-1)+4*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Sep 13 2018
  • Maple
    seq(coeff(series(x/(x^4-4*x^3-4*x+1),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Sep 12 2018
  • Mathematica
    z = 60; s = x/(1 - x)^2; p = 1 - 6 s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
    u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290911 *)
    u/6 (* A290912 *)
    LinearRecurrence[{4,0,4,-1},{0,1,4,16},30] (* Harvey P. Dale, Sep 18 2022 *)
  • PARI
    x='x+O('x^33); concat(0, Vec(x/(1-4*x-4*x^3+x^4))) \\ Altug Alkan, Sep 12 2018
    

Formula

G.f.: x/(1 - 4 x - 4 x^3 + x^4). [Corrected by A.H.M. Smeets, Sep 12 2018]
a(n) = 4*a(n-1) + 4*a(n-3) - a(n-4).
a(n) = (1/6)*A290911(n) for n >= 0.