A290949 Number of connected dominating sets in the n X n rook complement graph.
1, 0, 325, 63899, 33542996, 68719407048, 562949953031061, 18446744073707483871, 2417851639229258338870480, 1267650600228229401496650962840, 2658455991569831745807614120307387245, 22300745198530623141535718272648360299106443
Offset: 1
Keywords
Links
- Eric Weisstein's World of Mathematics, Connected Dominating Set
- Eric Weisstein's World of Mathematics, Rook Complement Graph
Programs
-
Mathematica
Table[If[n == 1, 1, 2^(n^2) - 2 n (2^n - 1) + n^2 (1 - 2 (2^(n - 1) - 1)^2 + (n - 1)^2) - 3 Binomial[n, 2]^2 - 1], {n, 20}] (* Eric W. Weisstein, Jan 15 2018 *)
-
PARI
a(n) = if(n==1, 1, 2^(n^2) - 2*n*(2^n - 1) + n^2 - 2*n^2*(2^(n-1)-1)^2 + n^2*(n-1)^2 - 3*binomial(n,2)^2 - 1); \\ Andrew Howroyd, Jan 14 2018
Formula
a(n) = 2^(n^2) - 2*n*(2^n - 1) + n^2 - 2*n^2*(2^(n-1)-1)^2 + n^2*(n-1)^2 - 3*binomial(n,2)^2 - 1 for n > 1. - Andrew Howroyd, Jan 14 2018
Extensions
a(6)-a(12) from Andrew Howroyd, Jan 14 2018