cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290986 Expansion of x^6/((1 - x)^2*(1 - 2*x + x^3 - x^4)).

Original entry on oeis.org

1, 4, 11, 25, 52, 103, 199, 379, 716, 1346, 2523, 4721, 8825, 16487, 30791, 57494, 107343, 200400, 374116, 698403, 1303770, 2433846, 4543428, 8481513, 15832975, 29556394, 55174730, 102998026, 192272662, 358927018, 670030771
Offset: 6

Views

Author

R. J. Mathar, Aug 16 2017

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,4,11,25,52,103]; [n le 6 select I[n] else 4*Self(n-1)-5*Self(n-2)+Self(n-3)+3*Self(n-4)-3*Self(n-5)+Self(n-6): n in [1..40]]; // Vincenzo Librandi, Aug 17 2017
    
  • Maple
    f:= gfun:-rectoproc({a(n)-a(n+1)+2*a(n+3)-a(n+4)+n-1, a(0) = 0, a(1) = 0, a(2) = 0, a(3) = 0, a(4) = 0, a(5) = 0, a(6) = 1}, a(n), remember):
    map(f, [$6..100]); # Robert Israel, Aug 17 2017
  • Mathematica
     LinearRecurrence[{4,-5,1,3,-3,1}, {1,4,11,25,52,103}, 40] (* Vincenzo Librandi, Aug 17 2017 *)
  • PARI
    Vec(x^6/((1-x)^2*(1-2*x+x^3-x^4)) + O(x^50)) \\ Michel Marcus, Aug 17 2017
    
  • SageMath
    def A290986_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^6/((1-x)^2*(1-2*x+x^3-x^4)) ).list()
    a=A290986_list(50); a[6:] # G. C. Greubel, Apr 12 2023

Formula

a(n) = A049858(n-2) - (n-2).