cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290987 Expansion of (1 - 2*x + x^2 - x^4 + x^3 + x^5)/((1 - x)^2*(1 - 2*x + x^3 - x^4)).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 63, 122, 233, 441, 830, 1557, 2915, 5451, 10186, 19026, 35529, 66337, 123849, 231211, 431631, 805768, 1504193, 2807986, 5241856, 9785309, 18266848, 34099850, 63656272, 118831031, 221829087, 414101780, 773028830, 1443059634, 2693846606
Offset: 0

Views

Author

R. J. Mathar, Aug 16 2017

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,2,4,8,16,32]; [n le 6 select I[n] else 4*Self(n-1)-5*Self(n-2) +Self(n-3)+3*Self(n-4)-3*Self(n-5)+Self(n-6): n in [1..40]]; // Vincenzo Librandi, Aug 17 2017
    
  • Maple
    f:= gfun:-rectoproc({a(n)-3*a(n+1)+3*a(n+2)+a(n+3)-5*a(n+4)+4*a(n+5)-a(n+6), a(0) = 1, a(1) = 2, a(2) = 4, a(3) = 8, a(4) = 16, a(5) = 32}, a(n),remember):
    map(f, [$0..50]); # Robert Israel, Aug 16 2017
  • Mathematica
    DeleteCases[#, 0] &@ CoefficientList[Series[(1-2x+x^2-x^4+x^3+x^5)/((1-x)^2*(1-2x +x^3-x^4)), {x,0,34}], x] (* Michael De Vlieger, Aug 16 2017 *)
    LinearRecurrence[{4,-5,1,3,-3,1}, {1,2,4,8,16,32}, 40] (* Vincenzo Librandi, Aug 17 2017 *)
  • PARI
    Vec((1-2*x+x^2-x^4+x^3+x^5)/((1-x)^2*(1-2*x+x^3-x^4)) + O(x^50)) \\ Michel Marcus, Aug 17 2017
    
  • SageMath
    def A290987_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-2*x+x^2-x^4+x^3+x^5)/((1-x)^2*(1-2*x+x^3-x^4)) ).list()
    A290987_list(50) # G. C. Greubel, Apr 12 2023

Formula

a(n) = A059633(n+2) + A059633(n+3) - n.