A291408 p-INVERT of (1,1,0,0,0,0,...), where p(S) = (1 - S)(1 - S^2).
1, 3, 6, 11, 21, 39, 70, 126, 224, 394, 690, 1201, 2079, 3585, 6158, 10541, 17991, 30623, 51996, 88092, 148944, 251364, 423492, 712369, 1196557, 2007135, 3362598, 5626847, 9405465, 15705447, 26200066, 43667802, 72719312, 121000846, 201185334, 334265089
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,1,-2,-3,-1)
Programs
-
GAP
a:=[1,3,6,11,21,39];; for n in [7..10^2] do a[n]:=a[n-1]+2*a[n-2]+a[n-3]-2*a[n-4]-3*a[n-5]- a[n-6]; od; a; # Muniru A Asiru, Sep 10 2017
-
Mathematica
z = 60; s = x + x^2; p = (1 - s)(1 - s^2); Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A019590 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291408 *)
Formula
G.f.: -(((1 + x) (-1 - x + 2 x^3 + x^4))/((-1 + x + x^2)^2 (1 + x + x^2))).
a(n) = a(n-1) + 2*a(n-2) + a(n-3) - 2*a(n-4) - 3*a(n-5) - a(n-6) for n >= 7.
a(n) = (1/2) * A275439(n+4). - Alois P. Heinz, May 20 2025
Comments