cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291408 p-INVERT of (1,1,0,0,0,0,...), where p(S) = (1 - S)(1 - S^2).

Original entry on oeis.org

1, 3, 6, 11, 21, 39, 70, 126, 224, 394, 690, 1201, 2079, 3585, 6158, 10541, 17991, 30623, 51996, 88092, 148944, 251364, 423492, 712369, 1196557, 2007135, 3362598, 5626847, 9405465, 15705447, 26200066, 43667802, 72719312, 121000846, 201185334, 334265089
Offset: 0

Views

Author

Clark Kimberling, Sep 07 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291382 for a guide to related sequences.

Crossrefs

Programs

  • GAP
    a:=[1,3,6,11,21,39];;
    for n in [7..10^2] do a[n]:=a[n-1]+2*a[n-2]+a[n-3]-2*a[n-4]-3*a[n-5]- a[n-6]; od; a; # Muniru A Asiru, Sep 10 2017
  • Mathematica
    z = 60; s = x + x^2; p = (1 - s)(1 - s^2);
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A019590 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291408 *)

Formula

G.f.: -(((1 + x) (-1 - x + 2 x^3 + x^4))/((-1 + x + x^2)^2 (1 + x + x^2))).
a(n) = a(n-1) + 2*a(n-2) + a(n-3) - 2*a(n-4) - 3*a(n-5) - a(n-6) for n >= 7.
a(n) = (1/2) * A275439(n+4). - Alois P. Heinz, May 20 2025