cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A006887 Kaprekar triples: q such that q = x + y + z and q^3 = x*10^2n + y*10^n + z, where z < 10^n and n is the number of digits in q. q is not a power of 10 (except q=1).

Original entry on oeis.org

1, 8, 45, 297, 2322, 2728, 4445, 4544, 4949, 5049, 5455, 5554, 7172, 27100, 44443, 55556, 60434, 77778, 143857, 208494, 226071, 279720, 313390, 324675, 329967, 346060, 368928, 395604, 422577, 427868, 461539, 472823, 478115, 488214, 494208
Offset: 1

Views

Author

Keywords

Comments

The initial term a(1) = 1 is somewhat conventional: it is the only term with x = y = 0 and q = z = 10^k, which is explicitly allowed only for k = 0 and forbidden for k > 0. In all other cases, 0 < x, y, z < q, and q^3 has the same number of digits as x*10^2n. - M. F. Hasler, Aug 24 2017

Examples

			1 = 0 + 0 + 1 and 1^3 = (00)1 (cf. comment),
8 = 5 + 1 + 2 and 8^3 = 512,
45 = 9 + 11 + 25, and 45^3 = 91125. - _M. F. Hasler_, Aug 24 2017
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, NY, 1986, p. 151.

Crossrefs

Cf. A291461.

Programs

  • Mathematica
    ok[n_] := n==1 || Block[{k = 10^IntegerLength[n], m = n^3}, n == Mod[m, k] + Floor[ m/k^2] + Mod[Floor[m/k], k] && ! IntegerQ@ Log10@ n]; Select[ Range@ 500000, ok] (* Giovanni Resta, Aug 23 2017 *)
  • PARI
    m=1;for(n=1,6,for(q=m+(n>1),-1+m*=10,q==sumdigits(q^3,m)&&print1(q","))) \\ M. F. Hasler, Aug 24 2017

Extensions

Entry revised by Larry Reeves (larryr(AT)acm.org), Apr 25 2001 and Dec 08 2002

A328198 Numbers of the form N = a+b+c such that N^3 = concat(a,b,c); a, b, c > 0.

Original entry on oeis.org

8, 45, 1611, 4445, 4544, 4949, 5049, 5455, 5554, 7172, 19908, 55556, 60434, 77778, 422577, 427868, 461539, 478115, 488214, 494208, 543752, 559846, 598807, 664741, 757835, 791505, 807598, 4927940, 5555555, 6183170, 25252524, 27272728, 27282727, 28201724, 30731977
Offset: 1

Views

Author

M. F. Hasler, Oct 07 2019

Keywords

Comments

A variant of Kaprekar and pseudo-Kaprekar triples, cf. A006887 and A060768.
Leading zeros as in A006887(4), 26198073 = (26+198+073)^3, are not allowed here.
Is it a coincidence that a(2)^3 = 91125 also verifies sqrt(91125) = 9*sqrt(1125)?
See A328199 for the triples (a,b,c) and A328200 for the cubes / concatenations.

Examples

			5 + 1 + 2 = 512^(1/3) = 8,
9 + 11 + 25 = 91125^(1/3) = 45,
418 + 1062 + 131 = (4181062131)^(1/3) = 1611, ...
		

Crossrefs

Cf. A328199 (corresponding a,b,c), A328200 (cubes / concatenations), A006887 & A291461 (Kaprekar numbers), A060768 (pseudo Kaprekar numbers); A000578 (the cubes), A055642 (number of digits of n).

Programs

  • PARI
    is(n,Ln=A055642(n),n3=n^3,Ln3=A055642(n3))={my(ab,c); for(Lc=Ln3-2*Ln,Ln, [ab,c]=divrem(n3, 10^Lc); n-c<10^(Ln-1) || c < 10^(Lc-1) || for( Lb=Ln3-Ln-Lc,Ln, vecsum(divrem(ab,10^Lb)) == n-c && ab%10^Lb>=10^(Lb-1)&& return(1)))} \\ A055642(n)=logint(n,10)+1 = #digits(n)
    for( Ln=1,oo, for( n=10^(Ln-1),10^Ln-1, is(n,Ln)&& print1(n", ")))

Extensions

a(31)-a(35) from Giovanni Resta, Oct 09 2019

A328199 Triples (a,b,c) such that (a+b+c)^3 = concat(a,b,c), a, b, c > 0, ordered by size of this value.

Original entry on oeis.org

5, 1, 2, 9, 11, 25, 418, 1062, 131, 878, 2442, 1125, 938, 2422, 1184, 1212, 1388, 2349, 1287, 1113, 2649, 1623, 2457, 1375, 1713, 2377, 1464, 3689, 1035, 2448, 7890, 10706, 1312, 17147, 18793, 19616, 22072, 11858, 26504, 47051, 15775, 14952
Offset: 1

Views

Author

M. F. Hasler, Oct 07 2019

Keywords

Comments

The sequence can be considered as a table with rows of length 3, row(n) = a(3n-2 .. 3n).
A variant of Kaprekar and pseudo-Kaprekar triples, cf. A006887 and A060768.
See A328198 and A328200 (sequence of the values a+b+c and concatenated triples) for more information.

Examples

			5+1+2 = 512^(1/3) = 8,
9+11+25 = 91125^(1/3) = 45,
418+1062+131 = (4181062131)^(1/3) = 1611, ...
		

Crossrefs

Cf. A328198 (row sums), A328200 (rows concatenated), A006887 & A291461 (Kaprekar numbers), A060768 (pseudo Kaprekar numbers); A000578 (the cubes), A055642 (number of digits of n).

Programs

  • PARI
    is(n,Ln=A055642(n),n3=n^3,Ln3=A055642(n3))={my(ab,c); for(Lc=Ln3-2*Ln,Ln, [ab,c]=divrem(n3, 10^Lc); n-c<10^(Ln-1) || c < 10^(Lc-1) || for( Lb=Ln3-Ln-Lc,Ln, vecsum(divrem(ab,10^Lb)) == n-c && ab%10^Lb>=10^(Lb-1)&& return(concat(divrem(ab,10^Lb)~,c))))} \\ A055642(n)=logint(n,10)+1 = #digits(n)
    for( Ln=1,oo, for( n=10^(Ln-1),10^Ln-1, (t=is(n,Ln))&& print1(t", ")))

A328200 Cubes of the form N^3 = concat(a,b,c) with N = a+b+c; a, b, c > 0.

Original entry on oeis.org

512, 91125, 4181062131, 87824421125, 93824221184, 121213882349, 128711132649, 162324571375, 171323771464, 368910352448, 7890107061312, 171471879319616, 220721185826504, 470511577514952, 75460133084214033, 78330233506116032, 98316229404133819, 109294197946170875
Offset: 1

Views

Author

M. F. Hasler, Oct 07 2019

Keywords

Comments

A variant of Kaprekar and pseudo-Kaprekar triples, cf. A006887 and A060768.
Leading zeros as in A006887(4), 26198073 = (26 + 198 + 073)^3, are not allowed here.
Even though this may be the most relevant sequence concerning this problem, we consider A328198 (sequence of the values N) as the main entry where all other information can be found. See also A328199 for the triples (a,b,c).

Examples

			512^(1/3) = 8 = 5 + 1 + 2,
91125^(1/3) = 45 = 9 + 11 + 25,
4181062131^(1/3) = 1611 = 418 + 1062 + 131, ...
		

Crossrefs

Cf. A328198 (values of N), A328199 (triples a,b,c), A006887 & A291461 (Kaprekar numbers), A060768 (pseudo Kaprekar numbers); A000578 (the cubes), A055642 (number of digits of n).

Programs

  • PARI
    is(n,Ln=A055642(n),n3=n^3,Ln3=A055642(n3))={my(ab,c); for(Lc=Ln3-2*Ln,Ln, [ab,c]=divrem(n3, 10^Lc); n-c<10^(Ln-1) || c < 10^(Lc-1) || for( Lb=Ln3-Ln-Lc,Ln, vecsum(divrem(ab,10^Lb)) == n-c && ab%10^Lb>=10^(Lb-1)&& return(1)))} \\ A055642(n)=logint(n,10)+1 = #digits(n)
    for( Ln=1,oo, for( n=10^(Ln-1),10^Ln-1, is(n,Ln)&& print1(n^3", ")))
Showing 1-4 of 4 results.