cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A060809 Erroneous version of A006887.

Original entry on oeis.org

1, 8, 10, 45, 297, 2322, 2728, 4445, 4544, 4949, 5049, 5455, 5554, 7172, 27100, 44443, 55556, 60434, 77778, 143857, 208494, 226071, 279720, 313390, 324675, 329967, 346060, 368928, 395604, 422577, 427868, 461539, 472823, 478115, 488214, 494208, 495208, 499500, 500500, 517076, 533170, 543752, 559846, 565137, 598807
Offset: 1

Views

Author

Keywords

Comments

Included in accordance with OEIS policy of including published but incorrect sequences, to serve as pointers to the correct versions.

A291461 Kaprekar triples: q^3 = x*10^2n + y*10^n + z, with q = x + y + z and 10^n > q > 10^(n-1) (q = 1 allowed for n = 1).

Original entry on oeis.org

1, 512, 91125, 26198073, 12519490248, 20301732352, 87824421125, 93824221184, 121213882349, 128711132649, 162324571375, 171323771464, 368910352448, 19902511000000, 87782935806307, 171471879319616, 220721185826504, 470511577514952, 2977097087043793, 9063181647017784
Offset: 1

Views

Author

M. F. Hasler, Aug 24 2017

Keywords

Crossrefs

Cf. A006887.

Programs

  • PARI
    m=10; for(q=1,1e4,if(qA006887 for slightly more efficient code.

Formula

a(n) = A006887(n)^3.

A060768 Pseudo-Kaprekar triples: q such that if q=x+y+z, then q^3=x*10^i + y*10^j + z, where (y*10^j+z < 10^i) and z < 10^j.

Original entry on oeis.org

1, 8, 10, 45, 100, 134, 297, 783, 972, 1000, 1368, 1611, 2322, 2710, 2728, 3086, 4445, 4544, 4949, 5049, 5455, 5554, 7172, 10000, 19908, 21268, 27100, 44443, 55556, 60434, 76581, 77778, 100000, 103239, 133334, 143857, 199728, 208494, 226071
Offset: 1

Views

Author

Larry Reeves (larryr(AT)acm.org), Apr 24 2001

Keywords

Comments

True Kaprekar triples (A006887) must have j=n and i=2n, where n is the number of digits in q.

Examples

			134^3=2406104 and 134=24+06+104. 134 is not a Kaprekar triple since the three terms of the sum would need to be 2, 406 and 104. 134 is not a term of A328198 because one addend (06) begins with '0'.
		

Crossrefs

Extensions

Offset changed to 1 by Giovanni Resta, Oct 09 2019

A328198 Numbers of the form N = a+b+c such that N^3 = concat(a,b,c); a, b, c > 0.

Original entry on oeis.org

8, 45, 1611, 4445, 4544, 4949, 5049, 5455, 5554, 7172, 19908, 55556, 60434, 77778, 422577, 427868, 461539, 478115, 488214, 494208, 543752, 559846, 598807, 664741, 757835, 791505, 807598, 4927940, 5555555, 6183170, 25252524, 27272728, 27282727, 28201724, 30731977
Offset: 1

Views

Author

M. F. Hasler, Oct 07 2019

Keywords

Comments

A variant of Kaprekar and pseudo-Kaprekar triples, cf. A006887 and A060768.
Leading zeros as in A006887(4), 26198073 = (26+198+073)^3, are not allowed here.
Is it a coincidence that a(2)^3 = 91125 also verifies sqrt(91125) = 9*sqrt(1125)?
See A328199 for the triples (a,b,c) and A328200 for the cubes / concatenations.

Examples

			5 + 1 + 2 = 512^(1/3) = 8,
9 + 11 + 25 = 91125^(1/3) = 45,
418 + 1062 + 131 = (4181062131)^(1/3) = 1611, ...
		

Crossrefs

Cf. A328199 (corresponding a,b,c), A328200 (cubes / concatenations), A006887 & A291461 (Kaprekar numbers), A060768 (pseudo Kaprekar numbers); A000578 (the cubes), A055642 (number of digits of n).

Programs

  • PARI
    is(n,Ln=A055642(n),n3=n^3,Ln3=A055642(n3))={my(ab,c); for(Lc=Ln3-2*Ln,Ln, [ab,c]=divrem(n3, 10^Lc); n-c<10^(Ln-1) || c < 10^(Lc-1) || for( Lb=Ln3-Ln-Lc,Ln, vecsum(divrem(ab,10^Lb)) == n-c && ab%10^Lb>=10^(Lb-1)&& return(1)))} \\ A055642(n)=logint(n,10)+1 = #digits(n)
    for( Ln=1,oo, for( n=10^(Ln-1),10^Ln-1, is(n,Ln)&& print1(n", ")))

Extensions

a(31)-a(35) from Giovanni Resta, Oct 09 2019

A328199 Triples (a,b,c) such that (a+b+c)^3 = concat(a,b,c), a, b, c > 0, ordered by size of this value.

Original entry on oeis.org

5, 1, 2, 9, 11, 25, 418, 1062, 131, 878, 2442, 1125, 938, 2422, 1184, 1212, 1388, 2349, 1287, 1113, 2649, 1623, 2457, 1375, 1713, 2377, 1464, 3689, 1035, 2448, 7890, 10706, 1312, 17147, 18793, 19616, 22072, 11858, 26504, 47051, 15775, 14952
Offset: 1

Views

Author

M. F. Hasler, Oct 07 2019

Keywords

Comments

The sequence can be considered as a table with rows of length 3, row(n) = a(3n-2 .. 3n).
A variant of Kaprekar and pseudo-Kaprekar triples, cf. A006887 and A060768.
See A328198 and A328200 (sequence of the values a+b+c and concatenated triples) for more information.

Examples

			5+1+2 = 512^(1/3) = 8,
9+11+25 = 91125^(1/3) = 45,
418+1062+131 = (4181062131)^(1/3) = 1611, ...
		

Crossrefs

Cf. A328198 (row sums), A328200 (rows concatenated), A006887 & A291461 (Kaprekar numbers), A060768 (pseudo Kaprekar numbers); A000578 (the cubes), A055642 (number of digits of n).

Programs

  • PARI
    is(n,Ln=A055642(n),n3=n^3,Ln3=A055642(n3))={my(ab,c); for(Lc=Ln3-2*Ln,Ln, [ab,c]=divrem(n3, 10^Lc); n-c<10^(Ln-1) || c < 10^(Lc-1) || for( Lb=Ln3-Ln-Lc,Ln, vecsum(divrem(ab,10^Lb)) == n-c && ab%10^Lb>=10^(Lb-1)&& return(concat(divrem(ab,10^Lb)~,c))))} \\ A055642(n)=logint(n,10)+1 = #digits(n)
    for( Ln=1,oo, for( n=10^(Ln-1),10^Ln-1, (t=is(n,Ln))&& print1(t", ")))

A328200 Cubes of the form N^3 = concat(a,b,c) with N = a+b+c; a, b, c > 0.

Original entry on oeis.org

512, 91125, 4181062131, 87824421125, 93824221184, 121213882349, 128711132649, 162324571375, 171323771464, 368910352448, 7890107061312, 171471879319616, 220721185826504, 470511577514952, 75460133084214033, 78330233506116032, 98316229404133819, 109294197946170875
Offset: 1

Views

Author

M. F. Hasler, Oct 07 2019

Keywords

Comments

A variant of Kaprekar and pseudo-Kaprekar triples, cf. A006887 and A060768.
Leading zeros as in A006887(4), 26198073 = (26 + 198 + 073)^3, are not allowed here.
Even though this may be the most relevant sequence concerning this problem, we consider A328198 (sequence of the values N) as the main entry where all other information can be found. See also A328199 for the triples (a,b,c).

Examples

			512^(1/3) = 8 = 5 + 1 + 2,
91125^(1/3) = 45 = 9 + 11 + 25,
4181062131^(1/3) = 1611 = 418 + 1062 + 131, ...
		

Crossrefs

Cf. A328198 (values of N), A328199 (triples a,b,c), A006887 & A291461 (Kaprekar numbers), A060768 (pseudo Kaprekar numbers); A000578 (the cubes), A055642 (number of digits of n).

Programs

  • PARI
    is(n,Ln=A055642(n),n3=n^3,Ln3=A055642(n3))={my(ab,c); for(Lc=Ln3-2*Ln,Ln, [ab,c]=divrem(n3, 10^Lc); n-c<10^(Ln-1) || c < 10^(Lc-1) || for( Lb=Ln3-Ln-Lc,Ln, vecsum(divrem(ab,10^Lb)) == n-c && ab%10^Lb>=10^(Lb-1)&& return(1)))} \\ A055642(n)=logint(n,10)+1 = #digits(n)
    for( Ln=1,oo, for( n=10^(Ln-1),10^Ln-1, is(n,Ln)&& print1(n^3", ")))

A171493 "Kaprekar quadruples": digits of X^4 taken D at a time sum to X (where D is number of digits in X.)

Original entry on oeis.org

1, 7, 45, 55, 67, 100, 433, 4950, 5050, 38212, 65068, 190576, 295075, 299035, 310024, 336700, 343333, 394615, 414558, 433566, 448228, 450550, 467236, 475497, 476191, 486486, 499500, 500500, 523513, 534898, 549550, 599743, 622414, 628408, 647362
Offset: 1

Views

Author

Robert Munafo, Dec 10 2009

Keywords

Comments

Referred to as "natural" Kaprekar numbers on Munafo webpage because a(n) and the 4 pieces of a(n)^4 must all have the same number of digits (some of which can be leading zeros). Analogous to A053816 for squares, as opposed to A006886 and A045913 which allow irregular divisions.

Examples

			7^4 = 2401 ; 2+4+0+1 = 7. 67^4 = 20151121 ; 20+15+11+21 = 67. 4950^4 = 600372506250000 ; 0600+3725+0625+0000 = 4950.
		

Crossrefs

Extensions

Added term a(1)=1, Robert Gerbicz, Jul 28 2011

A171500 "Kaprekar quintuples": digits of X^5 taken D at a time sum to X (where D is number of digits in X.)

Original entry on oeis.org

1, 10, 1000, 7776, 27100, 73440, 95120, 500499, 505791, 540539, 598697, 665335, 697598, 732347, 7607610, 37944478, 46945205, 54995500, 55216205, 56607166, 58106906, 63136413, 66595563, 68167738, 68807564, 69188525, 70667477, 72197730, 73197730, 74145807
Offset: 1

Views

Author

Robert Munafo, Dec 10 2009

Keywords

Comments

Referred to as "natural" Kaprekar numbers on Munafo webpage because a(n) and the 5 pieces of a(n)^5 must all have the same number of digits (some of which can be leading zeros). Analogous to A053816 for squares, as opposed to A006886 and A045913 which allow irregular divisions.

Examples

			7776^5 = 28430288029929701376 ; 2843+0288+0299+2970+1376 = 7776.
27100^5 = 14616603103510000000000 ; 146+16603+10351+00000+00000 = 27100.
		

Crossrefs

Extensions

More terms from Robert Gerbicz, Jul 28 2011
Showing 1-8 of 8 results.