A291508 a(n) = (n!)^10 * Sum_{i=1..n} 1/i^10.
0, 1, 1025, 60526249, 63466432537600, 619789443653380965376, 37476298202061058687475122176, 10586126703664512292193022557971021824, 11366767006463449393869821987386636472445566976, 39633465899293694663690352980684333029782095493517541376
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..69
Crossrefs
Programs
-
Mathematica
Table[(n!)^10 * Sum[1/i^10, {i, 1, n}], {n, 0, 12}] (* Vaclav Kotesovec, Aug 27 2017 *)
-
PARI
a(n) = n!^10*sum(i=1, n, 1/i^10); \\ Michel Marcus, Aug 26 2017
Formula
a(0) = 0, a(1) = 1, a(n+1) = (n^10+(n+1)^10)*a(n) - n^20*a(n-1) for n > 0.
a(n) ~ 32 * Pi^15 * n^(10*n+5) / (93555 * exp(10*n)). - Vaclav Kotesovec, Aug 27 2017
Sum_{n>=0} a(n) * x^n / (n!)^10 = polylog(10,x) / (1 - x). - Ilya Gutkovskiy, Jul 15 2020