A291557 a(n) = 23*2^n - 1.
22, 45, 91, 183, 367, 735, 1471, 2943, 5887, 11775, 23551, 47103, 94207, 188415, 376831, 753663, 1507327, 3014655, 6029311, 12058623, 24117247, 48234495, 96468991, 192937983, 385875967, 771751935, 1543503871, 3087007743, 6174015487, 12348030975, 24696061951, 49392123903, 98784247807, 197568495615, 395136991231, 790273982463, 1580547964927
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..3317
- Gennady Eremin, Partitioning the set of natural numbers into Mersenne trees and into arithmetic progressions; Natural Matrix and Linnik's constant, arXiv:2405.16143 [math.CO], 2024. See pp. 3-5, 14.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Programs
-
Maple
A291557:=n->23*2^n-1: seq(A291557(n), n=0..50); # Wesley Ivan Hurt, Oct 05 2017
-
Mathematica
23*2^Range[0,40]-1 (* or *) LinearRecurrence[{3,-2},{22,45},40] (* Harvey P. Dale, Jul 20 2018 *)
-
PARI
a(n) = 23*2^n - 1; \\ Altug Alkan, Mar 04 2018
Formula
From Chai Wah Wu, Mar 04 2018: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) for n > 1.
G.f.: (22 - 21*x)/((1 - x)*(1 - 2*x)). (End)
Comments