A292119
O.g.f. equals the square of the e.g.f. of A291561.
Original entry on oeis.org
1, 10, 130, 2100, 40950, 943740, 25269300, 774635400, 26836251750, 1038607069500, 44448725821500, 2084869401615000, 106355178306877500, 5861473946222895000, 346999395775257225000, 21956626245257906202000, 1478562610889805715023750, 105561794005139231136877500, 7963731010308915234880987500, 632966979266333111428303275000, 52862553418201438508049805852500
Offset: 2
O.g.f.: A(x) = x^2 + 10*x^3 + 130*x^4 + 2100*x^5 + 40950*x^6 + 943740*x^7 + 25269300*x^8 + 774635400*x^9 + 26836251750*x^10 + 1038607069500*x^11 + 44448725821500*x^12 + 2084869401615000*x^13 + 106355178306877500*x^14 + 5861473946222895000*x^15 + 346999395775257225000*x^16 + 21956626245257906202000*x^17 + 1478562610889805715023750*x^18 + ...
such that the square root of the g.f. equals the e.g.f. of A291561, which begins:
A(x)^(1/2) = x + 10*x^2/2! + 315*x^3/3! + 18900*x^4/4! + 1819125*x^5/5! + 255405150*x^6/6! + 49165491375*x^7/7! + 12417798393000*x^8/8! + 3981456609755625*x^9/9! + 1579311121869731250*x^10/10! + ... + A291561(n)*x^n/n! + ...
-
{A291560(n, r) = (2*n-1)! * polcoeff( polcoeff( asin( k*sin(x + O(x^(2*n)))), 2*n-1, x), 2*r-1, k)}
{a(n) = polcoeff( sum(m=1,n,-A291560(m+1, m) * x^m / m! +x*O(x^n) )^2, n)}
for(n=2, 25, print1(a(n), ", "))
A291560
E.g.f. A(x,k) satisfies: sin(A(x,k)) = k * sin(x).
Original entry on oeis.org
1, -1, 1, 1, -10, 9, -1, 91, -315, 225, 1, -820, 8694, -18900, 11025, -1, 7381, -224730, 1143450, -1819125, 893025, 1, -66430, 5684679, -61647300, 203378175, -255405150, 108056025, -1, 597871, -142714845, 3162834675, -19494349875, 47377655325, -49165491375, 18261468225, 1, -5380840, 3573251964, -158546770200, 1734021238950, -7311738634200, 14041664336700, -12417798393000, 4108830350625, -1, 48427561, -89379726660, 7858123038900, -148224512094750, 1025176095093150, -3257761647640500, 5167045911327300, -3981456609755625, 1187451971330625
Offset: 1
This triangle of coefficients T(n,r) in e.g.f. A(x,k) begins:
[1],
[-1, 1],
[1, -10, 9],
[-1, 91, -315, 225],
[1, -820, 8694, -18900, 11025],
[-1, 7381, -224730, 1143450, -1819125, 893025],
[1, -66430, 5684679, -61647300, 203378175, -255405150, 108056025],
[-1, 597871, -142714845, 3162834675, -19494349875, 47377655325, -49165491375, 18261468225],
[1, -5380840, 3573251964, -158546770200, 1734021238950, -7311738634200, 14041664336700, -12417798393000, 4108830350625],
[-1, 48427561, -89379726660, 7858123038900, -148224512094750, 1025176095093150, -3257761647640500, 5167045911327300, -3981456609755625, 1187451971330625],
[1, -435848050, 2234929014549, -387282522072600, 12391233508580850, -136052492985945900, 674608025957515650, -1713147048499887000, 2313226290268018125, -1579311121869731250, 428670161650355625], ...
where e.g.f. A(x,k) = Sum_{n>=1, r=1..n} T(n,r) * x^(2*n-1) * k^(2*r-1) / (2*n-1)!.
E.g.f.: A(x,k) = k*x + (k^3 - k)*x^3/3! + (9*k^5 - 10*k^3 + k)*x^5/5! + (225*k^7 - 315*k^5 + 91*k^3 - k)*x^7/7! + (11025*k^9 - 18900*k^7 + 8694*k^5 - 820*k^3 + k)*x^9/9! + (893025*k^11 - 1819125*k^9 + 1143450*k^7 - 224730*k^5 + 7381*k^3 - k)*x^11/11! + (108056025*k^13 - 255405150*k^11 + 203378175*k^9 - 61647300*k^7 + 5684679*k^5 - 66430*k^3 + k)*x^13/13! + (18261468225*k^15 - 49165491375*k^13 + 47377655325*k^11 - 19494349875*k^9 + 3162834675*k^7 - 142714845*k^5 + 597871*k^3 - k)*x^15/15! + (4108830350625*k^17 - 12417798393000*k^15 + 14041664336700*k^13 - 7311738634200*k^11 + 1734021238950*k^9 - 158546770200*k^7 + 3573251964*k^5 - 5380840*k^3 + k)*x^17/17! + (1187451971330625*k^19 - 3981456609755625*k^17 + 5167045911327300*k^15 - 3257761647640500*k^13 + 1025176095093150*k^11 - 148224512094750*k^9 + 7858123038900*k^7 - 89379726660*k^5 + 48427561*k^3 - k)*x^19/19! +...
such that sin(A(x,k)) = k * sin(x).
-
T[n_, k_] := If[ n < 1, 0, (2 n - 1)! Coefficient[ SeriesCoefficient[ ArcSin[y Sin[x]], {x, 0, 2 n - 1}], y, 2 k - 1]]; (* Michael Somos, Jul 03 2018 *)
T[n_, k_] := ((-1)^n/((2*k - 1)^2*4^(2*k - 1)))*((2*k)!/k!)^2 * Sum[((-1)^i*(2*i - 1)^(2*n - 1))/((k - i)!*(k + i - 1)!), {i, 1, n}]; (* Vjekoslav-Leonard Prcic, Oct 10 2018 *)
-
{T(n, r) = (2*n-1)! * polcoeff( polcoeff( asin( k*sin(x + O(x^(2*n)))), 2*n-1,x), 2*r-1, k)}
for(n=1, 10, for(r=1, n, print1(T(n, r), ", ")); print(""))
Showing 1-2 of 2 results.
Comments