cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A292119 O.g.f. equals the square of the e.g.f. of A291561.

Original entry on oeis.org

1, 10, 130, 2100, 40950, 943740, 25269300, 774635400, 26836251750, 1038607069500, 44448725821500, 2084869401615000, 106355178306877500, 5861473946222895000, 346999395775257225000, 21956626245257906202000, 1478562610889805715023750, 105561794005139231136877500, 7963731010308915234880987500, 632966979266333111428303275000, 52862553418201438508049805852500
Offset: 2

Views

Author

Paul D. Hanna, Sep 18 2017

Keywords

Comments

A291561 is a diagonal in triangle A291560: a(n) = -A291560(n+1, n) for n >= 1; the e.g.f. of triangle A291560 equals arcsin( k*sin(x) ).

Examples

			O.g.f.: A(x) = x^2 + 10*x^3 + 130*x^4 + 2100*x^5 + 40950*x^6 + 943740*x^7 + 25269300*x^8 + 774635400*x^9 + 26836251750*x^10 + 1038607069500*x^11 + 44448725821500*x^12 + 2084869401615000*x^13 + 106355178306877500*x^14 + 5861473946222895000*x^15 + 346999395775257225000*x^16 + 21956626245257906202000*x^17 + 1478562610889805715023750*x^18 + ...
such that the square root of the g.f. equals the e.g.f. of A291561, which begins:
A(x)^(1/2) = x + 10*x^2/2! + 315*x^3/3! + 18900*x^4/4! + 1819125*x^5/5! + 255405150*x^6/6! + 49165491375*x^7/7! + 12417798393000*x^8/8! + 3981456609755625*x^9/9! + 1579311121869731250*x^10/10! + ... + A291561(n)*x^n/n! + ...
		

Crossrefs

Programs

  • PARI
    {A291560(n, r) = (2*n-1)! * polcoeff( polcoeff( asin( k*sin(x + O(x^(2*n)))), 2*n-1, x), 2*r-1, k)}
    {a(n) = polcoeff( sum(m=1,n,-A291560(m+1, m) * x^m / m! +x*O(x^n) )^2, n)}
    for(n=2, 25, print1(a(n), ", "))

A291560 E.g.f. A(x,k) satisfies: sin(A(x,k)) = k * sin(x).

Original entry on oeis.org

1, -1, 1, 1, -10, 9, -1, 91, -315, 225, 1, -820, 8694, -18900, 11025, -1, 7381, -224730, 1143450, -1819125, 893025, 1, -66430, 5684679, -61647300, 203378175, -255405150, 108056025, -1, 597871, -142714845, 3162834675, -19494349875, 47377655325, -49165491375, 18261468225, 1, -5380840, 3573251964, -158546770200, 1734021238950, -7311738634200, 14041664336700, -12417798393000, 4108830350625, -1, 48427561, -89379726660, 7858123038900, -148224512094750, 1025176095093150, -3257761647640500, 5167045911327300, -3981456609755625, 1187451971330625
Offset: 1

Views

Author

Paul D. Hanna, Aug 26 2017

Keywords

Comments

Compare to the law of sines of a spherical triangle: sin(A)/sin(a) = k.
The series reversion of e.g.f. A(x,k) wrt x equals A(x, 1/k).

Examples

			This triangle of coefficients T(n,r) in e.g.f. A(x,k) begins:
[1],
[-1, 1],
[1, -10, 9],
[-1, 91, -315, 225],
[1, -820, 8694, -18900, 11025],
[-1, 7381, -224730, 1143450, -1819125, 893025],
[1, -66430, 5684679, -61647300, 203378175, -255405150, 108056025],
[-1, 597871, -142714845, 3162834675, -19494349875, 47377655325, -49165491375, 18261468225],
[1, -5380840, 3573251964, -158546770200, 1734021238950, -7311738634200, 14041664336700, -12417798393000, 4108830350625],
[-1, 48427561, -89379726660, 7858123038900, -148224512094750, 1025176095093150, -3257761647640500, 5167045911327300, -3981456609755625, 1187451971330625],
[1, -435848050, 2234929014549, -387282522072600, 12391233508580850, -136052492985945900, 674608025957515650, -1713147048499887000, 2313226290268018125, -1579311121869731250, 428670161650355625], ...
where e.g.f. A(x,k) = Sum_{n>=1, r=1..n} T(n,r) * x^(2*n-1) * k^(2*r-1) / (2*n-1)!.
E.g.f.: A(x,k) = k*x + (k^3 - k)*x^3/3! + (9*k^5 - 10*k^3 + k)*x^5/5! + (225*k^7 - 315*k^5 + 91*k^3 - k)*x^7/7! + (11025*k^9 - 18900*k^7 + 8694*k^5 - 820*k^3 + k)*x^9/9! + (893025*k^11 - 1819125*k^9 + 1143450*k^7 - 224730*k^5 + 7381*k^3 - k)*x^11/11! + (108056025*k^13 - 255405150*k^11 + 203378175*k^9 - 61647300*k^7 + 5684679*k^5 - 66430*k^3 + k)*x^13/13! + (18261468225*k^15 - 49165491375*k^13 + 47377655325*k^11 - 19494349875*k^9 + 3162834675*k^7 - 142714845*k^5 + 597871*k^3 - k)*x^15/15! + (4108830350625*k^17 - 12417798393000*k^15 + 14041664336700*k^13 - 7311738634200*k^11 + 1734021238950*k^9 - 158546770200*k^7 + 3573251964*k^5 - 5380840*k^3 + k)*x^17/17! + (1187451971330625*k^19 - 3981456609755625*k^17 + 5167045911327300*k^15 - 3257761647640500*k^13 + 1025176095093150*k^11 - 148224512094750*k^9 + 7858123038900*k^7 - 89379726660*k^5 + 48427561*k^3 - k)*x^19/19! +...
such that sin(A(x,k)) = k * sin(x).
		

Crossrefs

Cf. A002452 (column 1), A001818 (diagonal), A291561 (diagonal), A291562 (central terms).
Cf. A291527 (variant).

Programs

  • Mathematica
    T[n_, k_] := If[ n < 1, 0, (2 n - 1)! Coefficient[ SeriesCoefficient[ ArcSin[y Sin[x]], {x, 0, 2 n - 1}], y, 2 k - 1]]; (* Michael Somos, Jul 03 2018 *)
    T[n_, k_] := ((-1)^n/((2*k - 1)^2*4^(2*k - 1)))*((2*k)!/k!)^2 * Sum[((-1)^i*(2*i - 1)^(2*n - 1))/((k - i)!*(k + i - 1)!), {i, 1, n}]; (* Vjekoslav-Leonard Prcic, Oct 10 2018 *)
  • PARI
    {T(n, r) = (2*n-1)! * polcoeff( polcoeff( asin( k*sin(x + O(x^(2*n)))), 2*n-1,x), 2*r-1, k)}
    for(n=1, 10, for(r=1, n, print1(T(n, r), ", ")); print(""))

Formula

E.g.f. A(x,k) = Sum_{n>=1, r=1..n} T(n,r) * x^(2*n-1) * k^(2*r-1)/(2*n-1)!, satisfies:
(1) sin(A(x,k)) = k * sin(x).
(2) A(x,k) = asin(k * sin(x)).
(3) A( A(x,k), 1/k) = x.
(4) sin( A^r(x,k) ) = k^r * sin(x) where A^r(x,k) = A(x,k^r) is the r-th iteration of A(x,k) wrt x, with A^0(x,k) = x.
(5) A(x,1) = x.
Row sums of n-th row equals zero for n>1.
T(n+1,1) = (-1)^n for n>=0.
T(n+1,2) = (-1)^(n-1) * (9^n - 1)/8 for n>=1.
T(n+1,n+1) = ( (2*n)! / (n!*2^n) )^2 = A001818(n) for n>=0.
T(n, r) = (-1)^n / ((2*r - 1)^2 * 4^(2*r - 1)) * ((2*r)! / r!)^2 * Sum_{i=1..n} (-1)^i * (2*i - 1)^(2*n - 1) / ((r - i)! * (r + i - 1)!). - Vjekoslav-Leonard Prcic, Oct 10 2018
Showing 1-2 of 2 results.