cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A291561 Diagonal in triangle A291560: a(n) = -A291560(n+1, n) for n>=1.

Original entry on oeis.org

1, 10, 315, 18900, 1819125, 255405150, 49165491375, 12417798393000, 3981456609755625, 1579311121869731250, 759174856282779811875, 434800144961955710437500, 292511797523155704196828125, 228384211143079261353677343750, 204811697921525723306815646484375, 209071781238293458351597411931250000, 241020562808770177455950891441994140625, 311597054671244174125111099536008660156250
Offset: 1

Views

Author

Paul D. Hanna, Sep 03 2017

Keywords

Comments

The e.g.f. G(x,k) of triangle A291560 satisfies: sin(G(x,k)) = k * sin(x).

Examples

			E.g.f.: A(x) = x + 10*x^2/2! + 315*x^3/3! + 18900*x^4/4! + 1819125*x^5/5! + 255405150*x^6/6! + 49165491375*x^7/7! + 12417798393000*x^8/8! + 3981456609755625*x^9/9! + 1579311121869731250*x^10/10! +...
Notice that the square of the e.g.f is an integer series:
A(x)^2 = x^2 + 10*x^3 + 130*x^4 + 2100*x^5 + 40950*x^6 + 943740*x^7 + 25269300*x^8 + 774635400*x^9 + 26836251750*x^10 + 1038607069500*x^11 + 44448725821500*x^12 + 2084869401615000*x^13 + 106355178306877500*x^14 + 5861473946222895000*x^15 + 346999395775257225000*x^16 +...+ A292119(n)*x^n +...
		

Crossrefs

Programs

  • PARI
    {A291560(n, r) = (2*n-1)! * polcoeff( polcoeff( asin( k*sin(x + O(x^(2*n)))), 2*n-1,x), 2*r-1, k)}
    for(n=1, 20, print1(-A291560(n+1, n), ", "))

Formula

Conjecture: a(n) = 4^n*gamma(-1/2 + n)*gamma(3/2 + n)*n/(3*Pi). - Thomas Scheuerle, Jan 27 2025

A291562 Central terms of triangle A291560: a(n) = A291560(2*n-1,n) for n>=1.

Original entry on oeis.org

1, -10, 8694, -61647300, 1734021238950, -136052492985945900, 24163008287867047021500, -8459330090805576230333085000, 5291501479813583484914737466943750, -5495231184920767021604909502973944937500, 8949980571079076055152283884403171536694652500, -21844650683271846600479522545258218405196394185875000, 76989791585920262367039920605319026539360791969735659537500
Offset: 1

Views

Author

Paul D. Hanna, Sep 08 2017

Keywords

Comments

The e.g.f. G(x,k) of triangle A291560 satisfies: sin(G(x,k)) = k * sin(x).

Programs

  • PARI
    {A291560(n, r) = (2*n-1)! * polcoeff( polcoeff( asin( k*sin(x + O(x^(2*n)))), 2*n-1, x), 2*r-1, k)}
    for(n=1, 15, print1(A291560(2*n-1, n), ", "))

A291527 E.g.f. A(x,k) satisfies: sn(A(x,k), k) = k * sn(x,k), where sn(,) and cn(,) are Jacobi Elliptic functions.

Original entry on oeis.org

1, -1, 0, 1, 1, 4, -10, -4, 9, -1, -44, 75, 224, -299, -180, 225, 1, 408, 92, -7400, 4758, 19592, -15876, -12600, 11025, -1, -3688, -23387, 194160, 155702, -1313312, 264586, 2445840, -1289925, -1323000, 893025, 1, 33212, 804210, -3980044, -20402105, 64915224, 74573980, -279362392, -18229761, 414859500, -144802350, -196465500, 108056025, -1, -298932, -22347185, 33998224, 1349961795, -1942776004, -12484642765, 21458573952, 32679754381, -72263858940, -19224079875, 92046754800, -20560114575, -39332393100, 18261468225, 1, 2690416, 581249144, 2783246128, -71371497796, -59230867280, 1313526021896, -606679979408, -7350770598874, 7512502827344, 15289334428104, -22529210886000, -9997446759300, 25906255174800, -3292683193800, -10226422206000, 4108830350625
Offset: 1

Views

Author

Paul D. Hanna, Aug 25 2017

Keywords

Comments

Compare to the law of sines of a spherical triangle: sin(A)/sin(a) = k.
The series reversion of e.g.f. A(x,k) wrt x equals A(k*x, 1/k) / k.

Examples

			This irregular triangle of coefficients T(n,r) in A(x,k) begins:
[1],
[-1, 0, 1],
[1, 4, -10, -4, 9],
[-1, -44, 75, 224, -299, -180, 225],
[1, 408, 92, -7400, 4758, 19592, -15876, -12600, 11025],
[-1, -3688, -23387, 194160, 155702, -1313312, 264586, 2445840, -1289925, -1323000, 893025],
[1, 33212, 804210, -3980044, -20402105, 64915224, 74573980, -279362392, -18229761, 414859500, -144802350, -196465500, 108056025],
[-1, -298932, -22347185, 33998224, 1349961795, -1942776004, -12484642765, 21458573952, 32679754381, -72263858940, -19224079875, 92046754800, -20560114575, -39332393100, 18261468225],
[1, 2690416, 581249144, 2783246128, -71371497796, -59230867280, 1313526021896, -606679979408, -7350770598874, 7512502827344, 15289334428104, -22529210886000, -9997446759300, 25906255174800, -3292683193800, -10226422206000, 4108830350625], ...
where e.g.f. A(x,k) = Sum_{n>=1, r=1..2*n-1} T(n,r) * x^(2*n-1) * k^(2*r-1) / (2*n-1)!.
E.g.f.: A(x,k) = k*x + (k^5 - k)*x^3/3! +
(9*k^9 - 4*k^7 - 10*k^5 + 4*k^3 + k)*x^5/5! +
(225*k^13 - 180*k^11 - 299*k^9 + 224*k^7 + 75*k^5 - 44*k^3 - k)*x^7/7! +
(11025*k^17 - 12600*k^15 - 15876*k^13 + 19592*k^11 + 4758*k^9 - 7400*k^7 + 92*k^5 + 408*k^3 + k)*x^9/9! +
(893025*k^21 - 1323000*k^19 - 1289925*k^17 + 2445840*k^15 + 264586*k^13 - 1313312*k^11 + 155702*k^9 + 194160*k^7 - 23387*k^5 - 3688*k^3 - k)*x^11/11! +
(108056025*k^25 - 196465500*k^23 - 144802350*k^21 + 414859500*k^19 - 18229761*k^17 - 279362392*k^15 + 74573980*k^13 + 64915224*k^11 - 20402105*k^9 - 3980044*k^7 + 804210*k^5 + 33212*k^3 + k)*x^13/13! +
(18261468225*k^29 - 39332393100*k^27 - 20560114575*k^25 + 92046754800*k^23 - 19224079875*k^21 - 72263858940*k^19 + 32679754381*k^17 + 21458573952*k^15 - 12484642765*k^13 - 1942776004*k^11 + 1349961795*k^9 + 33998224*k^7 - 22347185*k^5 - 298932*k^3 - k)*x^15/15! +...
such that
(1) sn(A(x,k), k) = k * sn(x,k),
(2) cn(A(x,k), k) = dn(x,k),
(3) dn(A(k*x,1/k)/k, k) = cn(x,k),
(4) A(k * A(x,k), 1/k) = k * x,
(5) A(A(x,1/k) / k, k) = x / k.
RELATED SERIES.
Let A^r(x,k) denote the r-th iteration of A(x,k) wrt x, then
sn( A^r(x,k), k) = k^r * sn(x,k).
For example, sn( A(A(x,k), k), k) = k^2 * sn(x,k), where
A(A(x,k), k) = k^2*x + (k^8 + k^6 - k^4 - k^2)*x^3/3! + (9*k^14 + 6*k^12 - k^10 - 20*k^8 - 9*k^6 + 14*k^4 + k^2)*x^5/5! + (225*k^20 + 135*k^18 - 180*k^16 - 300*k^14- 434*k^12 + 210*k^10 + 524*k^8 - 44*k^6 - 135*k^4 - k^2)*x^7/7! + (11025*k^26 + 6300*k^24 - 13230*k^22 - 23940*k^20 - 2961*k^18 + 6552*k^16 + 18332*k^14 + 22712*k^12 - 17825*k^10 - 12852*k^8 + 4658*k^6 + 1228*k^4 + k^2)*x^9/9! + (893025*k^32 + 496125*k^30 - 1393875*k^28 - 2433375*k^26 - 335475*k^24 + 3138345*k^22 + 866745*k^20 - 82995*k^18 + 562771*k^16 - 2154361*k^14 - 783465*k^12 + 1194707*k^10 + 201343*k^8 - 158445*k^6 - 11069*k^4 - k^2)*x^11/11! +...
Related Jacobi elliptic functions sn(,), cn(,), and dn(,) begin:
sn(x,k) = x + (-k^2 - 1)*x^3/3! + (k^4 + 14*k^2 + 1)*x^5/5! + (-k^6 - 135*k^4 - 135*k^2 - 1)*x^7/7! + (k^8 + 1228*k^6 + 5478*k^4 + 1228*k^2 + 1)*x^9/9! + (-k^10 - 11069*k^8 - 165826*k^6 - 165826*k^4 - 11069*k^2 - 1)*x^11/11! + (k^12 + 99642*k^10 + 4494351*k^8 + 13180268*k^6 + 4494351*k^4 + 99642*k^2 + 1)*x^13/13! + (-k^14 - 896803*k^12 - 116294673*k^10 - 834687179*k^8 - 834687179*k^6 - 116294673*k^4 - 896803*k^2 - 1)*x^15/15! +...
where sn(x,k) = sn(A(x,k), k)/k.
cn(x,k) = 1 - x^2/2! + (4*k^2 + 1)*x^4/4! + (-16*k^4 - 44*k^2 - 1)*x^6/6! + (64*k^6 + 912*k^4 + 408*k^2 + 1)*x^8/8! + (-256*k^8 - 15808*k^6 - 30768*k^4 - 3688*k^2 - 1)*x^10/10! + (1024*k^10 + 259328*k^8 + 1538560*k^6 + 870640*k^4 + 33212*k^2 + 1)*x^12/12! + (-4096*k^12 - 4180992*k^10 - 65008896*k^8 - 106923008*k^6 - 22945056*k^4 - 298932*k^2 - 1)*x^14/14! +...
where cn(x,k) = dn(A(k*x,1/k)/k, k),
and cn(2*A(x,k), k) = -1 + 2*dn(x,k)^2 / (1 - k^6*sn(x,k)^4).
dn(x,k) = 1 - k^2*x^2/2! + (k^4 + 4*k^2)*x^4/4! + (-k^6 - 44*k^4 - 16*k^2)*x^6/6! + (k^8 + 408*k^6 + 912*k^4 + 64*k^2)*x^8/8! + (-k^10 - 3688*k^8 -30768*k^6 - 15808*k^4 - 256*k^2)*x^10/10! + (k^12 + 33212*k^10 + 870640*k^8 + 1538560*k^6 + 259328*k^4 + 1024*k^2)*x^12/12! + (-k^14 - 298932*k^12 - 22945056*k^10 - 106923008*k^8 - 65008896*k^6 - 4180992*k^4 - 4096*k^2)*x^14/14! +...
where dn(x,k) = cn(A(x,k),k).
		

Crossrefs

Programs

  • PARI
    /* Find A such that sn(A,k) = k * sn(x,k) */
    {T(n,r) = my(A=x,V=[k],S=x,C=1-x^2/2);
    for(m=0,n, V=concat(V,[0,0]); A = x*Ser(V);
    S = intformal(C*subst(C,x,A));
    C = 1 - intformal(S*subst(C,x,A));
    V[#V] = -polcoeff(subst(S,x,A)/S,#V-1,x););
    (2*n-1)!*polcoeff(V[2*n-1],2*r-1,k)}
    for(n=1,10, for(r=1,2*n-1, print1(T(n,r),", "));print(""))
    
  • PARI
    {T(n, k) = my(A, m); if( n<0 || k>=(m=2*n+1), 0, A = intformal(1 / sqrt((1 - x^2) * (1 - y^2*x^2) + x*O(x^m))); A = subst(A, x, y * serreverse(A)); m! * polcoeff( polcoeff(A, m), 2*k+1))}; /* Michael Somos, Aug 27 2017 */

Formula

E.g.f. A(x,k) = Sum_{n>=1, r=1..2*n-1} T(n,r) * x^(2*n-1) * k^(2*r-1)/(2*n-1)!, satisfies:
(1) sn(A(x,k), k) = k * sn(x,k),
(2) cn(A(x,k), k) = dn(x,k),
(3) dn(A(k*x,1/k)/k, k) = cn(x,k),
(4) A(k*A(x,k), 1/k) = k*x,
(5) A(A(x,1/k)/k, k) = x/k,
(6) sn( A^r(x,k), k) = k^r * sn(x,k) where A^r(x,k) = A( A^{r-1}(x,k), k) is the r-th iteration of A(x,k) wrt x, with A^0(x,k) = x.
Row sums of n-th row equals zero for n>1.
T(n+1,1) = (-1)^n for n>=0.
T(n+1, 2*n+1) = ( (2*n)! / (n!*2^n) )^2 = A001818(n) for n>=0.

A292119 O.g.f. equals the square of the e.g.f. of A291561.

Original entry on oeis.org

1, 10, 130, 2100, 40950, 943740, 25269300, 774635400, 26836251750, 1038607069500, 44448725821500, 2084869401615000, 106355178306877500, 5861473946222895000, 346999395775257225000, 21956626245257906202000, 1478562610889805715023750, 105561794005139231136877500, 7963731010308915234880987500, 632966979266333111428303275000, 52862553418201438508049805852500
Offset: 2

Views

Author

Paul D. Hanna, Sep 18 2017

Keywords

Comments

A291561 is a diagonal in triangle A291560: a(n) = -A291560(n+1, n) for n >= 1; the e.g.f. of triangle A291560 equals arcsin( k*sin(x) ).

Examples

			O.g.f.: A(x) = x^2 + 10*x^3 + 130*x^4 + 2100*x^5 + 40950*x^6 + 943740*x^7 + 25269300*x^8 + 774635400*x^9 + 26836251750*x^10 + 1038607069500*x^11 + 44448725821500*x^12 + 2084869401615000*x^13 + 106355178306877500*x^14 + 5861473946222895000*x^15 + 346999395775257225000*x^16 + 21956626245257906202000*x^17 + 1478562610889805715023750*x^18 + ...
such that the square root of the g.f. equals the e.g.f. of A291561, which begins:
A(x)^(1/2) = x + 10*x^2/2! + 315*x^3/3! + 18900*x^4/4! + 1819125*x^5/5! + 255405150*x^6/6! + 49165491375*x^7/7! + 12417798393000*x^8/8! + 3981456609755625*x^9/9! + 1579311121869731250*x^10/10! + ... + A291561(n)*x^n/n! + ...
		

Crossrefs

Programs

  • PARI
    {A291560(n, r) = (2*n-1)! * polcoeff( polcoeff( asin( k*sin(x + O(x^(2*n)))), 2*n-1, x), 2*r-1, k)}
    {a(n) = polcoeff( sum(m=1,n,-A291560(m+1, m) * x^m / m! +x*O(x^n) )^2, n)}
    for(n=2, 25, print1(a(n), ", "))
Showing 1-4 of 4 results.