A291582 Maximum number of 6 sphinx tile shapes in a sphinx tiled hexagon of order n.
30, 132, 306, 552, 870, 1260, 1722, 2256, 2862, 3540, 4290, 5112, 6006, 6972, 8010, 9120, 10302, 11556, 12882, 14280, 15750, 17292, 18906, 20592, 22350, 24180, 26082, 28056, 30102, 32220, 34410, 36672, 39006, 41412, 43890, 46440, 49062, 51756, 54522, 57360, 60270, 63252
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Craig Knecht, Eight sphinx tile frame tessellations.
- Craig Knecht, Example for the sequence.
- Craig Knecht, Order 4 Hexagon with 246 subshapes.
- Craig Knecht, Sphinx Tile Component Triangles.
- Craig Knecht, Sphinx tiling of the triangle used to make the hexagon.
- Craig Knecht, T12 symmetric sphinx tilings.
- Carlos Rivera, Puzzle 920. An enigma related to A291582, Primes puzzles and problems connections.
- Wikipedia, Walter Trump.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
GAP
List([1..30], n -> 6*n*(6*n-1)); # G. C. Greubel, Dec 04 2018
-
Magma
[6*n*(6*n-1): n in [1..50]]; // Vincenzo Librandi, Sep 20 2017
-
Maple
seq(6*n*(6*n-1),n=1..100); # Robert Israel, Sep 19 2017
-
Mathematica
Array[6 # (6 # - 1) &, 42] (* Michael De Vlieger, Sep 19 2017 *) CoefficientList[Series[2(15 + 21 x)/(1-x)^3,{x, 0, 50}], x] (* Vincenzo Librandi, Sep 20 2017 *) CoefficientList[Series[6 E^x (5 + 17 x + 6 x^2), {x, 0, 50}], x]* Table[n!, {n, 0, 50}] (* Stefano Spezia, Dec 07 2018 *)
-
PARI
a(n) = 6*n*(6*n-1); \\ Altug Alkan, Apr 08 2018
-
Sage
[6*n*(6*n-1) for n in (1..50)] # G. C. Greubel, Dec 04 2018
Formula
a(n) = 6*n*(6*n-1). - Walter Trump
G.f.: 2*x*(15+21*x)/(1-x)^3. - Vincenzo Librandi, Sep 20 2017
E.g.f.: 6*exp(x)*(5 + 17*x + 6*x^2). - Stefano Spezia, Dec 07 2018
From Amiram Eldar, Jul 30 2024: (Start)
Sum_{n>=1} 1/a(n) = log(2)/3 + log(3)/4 - sqrt(3)*Pi/12.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/6 - log(2)/6 - arccoth(sqrt(3))/sqrt(3). (End)
Comments