A291601 Composite integers k such that 2^d == 2^(k/d) (mod k) for all d|k.
341, 1105, 1387, 2047, 2701, 3277, 4033, 4369, 4681, 5461, 7957, 8321, 10261, 13747, 13981, 14491, 15709, 18721, 19951, 23377, 31417, 31609, 31621, 35333, 42799, 49141, 49981, 60701, 60787, 65077, 65281, 68101, 80581, 83333, 85489, 88357, 90751, 104653, 123251, 129889
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Robert Israel)
Crossrefs
Programs
-
Maple
filter:= proc(n) local D,d; if isprime(n) then return false fi; D:= sort(convert(numtheory:-divisors(n),list)); for d in D while d^2 < n do if 2 &^ d - 2 &^(n/d) mod n <> 0 then return false fi od: true end proc: select(filter, [seq(i,i=3..2*10^5,2)]); # Robert Israel, Aug 28 2017
-
Mathematica
filterQ[n_] := CompositeQ[n] && AllTrue[Divisors[n], PowerMod[2, #, n] == PowerMod[2, n/#, n]&]; Select[Range[1, 10^6, 2], filterQ] (* Jean-François Alcover, Jun 18 2020 *)
-
PARI
is(k) = {if(k == 1 || !(k%2) || isprime(k), return(0)); fordiv(k, d, if(d^2 <= k && Mod(2, k)^d != Mod(2, k)^(k/d), return(0))); 1;} \\ Amiram Eldar, Apr 22 2024
Comments