cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A291601 Composite integers k such that 2^d == 2^(k/d) (mod k) for all d|k.

Original entry on oeis.org

341, 1105, 1387, 2047, 2701, 3277, 4033, 4369, 4681, 5461, 7957, 8321, 10261, 13747, 13981, 14491, 15709, 18721, 19951, 23377, 31417, 31609, 31621, 35333, 42799, 49141, 49981, 60701, 60787, 65077, 65281, 68101, 80581, 83333, 85489, 88357, 90751, 104653, 123251, 129889
Offset: 1

Views

Author

Max Alekseyev, Aug 27 2017

Keywords

Comments

Such k must be odd.
For d=1, we have 2^k == 2 (mod k), implying that k is a Fermat pseudoprime (A001567).
Every Super-Poulet number belongs to this sequence.

Crossrefs

Subsequence of A001567.
Supersequence of A050217, their set difference is given by A291602.
Cf. A291602.

Programs

  • Maple
    filter:= proc(n) local D,d;
      if isprime(n) then return false fi;
      D:= sort(convert(numtheory:-divisors(n),list));
      for d in D while d^2 < n do
        if 2 &^ d - 2 &^(n/d) mod n <> 0 then return false fi
      od:
      true
    end proc:
    select(filter, [seq(i,i=3..2*10^5,2)]); # Robert Israel, Aug 28 2017
  • Mathematica
    filterQ[n_] := CompositeQ[n] && AllTrue[Divisors[n], PowerMod[2, #, n] == PowerMod[2, n/#, n]&];
    Select[Range[1, 10^6, 2], filterQ] (* Jean-François Alcover, Jun 18 2020 *)
  • PARI
    is(k) = {if(k == 1 || !(k%2) || isprime(k), return(0)); fordiv(k, d, if(d^2 <= k && Mod(2, k)^d != Mod(2, k)^(k/d), return(0))); 1;} \\ Amiram Eldar, Apr 22 2024

A291612 Carmichael numbers k that satisfy 2^d == 2^(k/d) (mod k) for all d|k and are not Super-Poulet numbers (A050217).

Original entry on oeis.org

1105, 852841, 3828001, 17098369, 118901521, 150846961, 172947529, 186393481, 200753281, 686059921, 771043201, 1001152801, 1207252621, 1269295201, 1632785701, 1772267281, 2301745249, 4765950001, 4897161361, 5278692481, 6030849889, 8251854001, 12121569601, 12456671569
Offset: 1

Views

Author

Keywords

Comments

Intersection of A002997 and A291602.

Examples

			Carmichael number 1105 = 5*13*17 is a term because 2^5 == 2^(13*17) (mod 1105), 2^13 == 2^(5*17) (mod 1105), 2^17 == 2^(5*13) (mod 1105) and it is not a Super-Poulet number.
		

Crossrefs

Showing 1-2 of 2 results.