cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A291602 Composite integers k satisfying 2^d == 2^(k/d) (mod k) for all d|k and that are not Super-Poulet (A050217).

Original entry on oeis.org

1105, 13981, 68101, 137149, 149281, 158369, 266305, 285541, 423793, 617093, 625921, 852841, 1052503, 1052929, 1104349, 1128121, 1306801, 1746289, 2940337, 3048841, 3828001, 4072729, 4154161, 4209661, 4682833, 6183601, 6236473, 6617929, 7803769, 9106141, 11157721, 11644921, 12096613, 12932989, 13554781
Offset: 1

Views

Author

Max Alekseyev, Aug 27 2017

Keywords

Comments

The set difference of A291601 and A050217.
Terms that are Carmichael numbers (A002997) are given by A291612. - Altug Alkan, Aug 27 2017

Crossrefs

Programs

  • PARI
    is(k) = {if(k == 1 || !(k%2) || isprime(k), return(0)); my(issp = 1); fordiv(k, d, if(Mod(2, d)^d != 2, issp = 0; break)); if(!issp, fordiv(k, d, if(d^2 <= k && Mod(2, k)^d != Mod(2, k)^(k/d), return(0))); 1, 0);} \\ Amiram Eldar, Apr 22 2024

A291616 Carmichael numbers k such that 2^d == 2^(k/d) (mod k) for all d|k.

Original entry on oeis.org

1105, 294409, 852841, 3828001, 17098369, 118901521, 150846961, 172947529, 186393481, 200753281, 686059921, 771043201, 1001152801, 1207252621, 1269295201, 1299963601, 1632785701, 1772267281, 2301745249, 4215885697, 4562359201, 4765950001, 4897161361
Offset: 1

Views

Author

Keywords

Comments

Intersection of A002997 and A291601.

Examples

			Carmichael number 294409 = 37*73*109 is a term because 2^37 == 2^(73*109) (mod 294409), 2^73 == 2^(37*109) (mod 294409), 2^109 == 2^(37*73) (mod 294409).
		

Crossrefs

Showing 1-2 of 2 results.