A291616 Carmichael numbers k such that 2^d == 2^(k/d) (mod k) for all d|k.
1105, 294409, 852841, 3828001, 17098369, 118901521, 150846961, 172947529, 186393481, 200753281, 686059921, 771043201, 1001152801, 1207252621, 1269295201, 1299963601, 1632785701, 1772267281, 2301745249, 4215885697, 4562359201, 4765950001, 4897161361
Offset: 1
Keywords
Examples
Carmichael number 294409 = 37*73*109 is a term because 2^37 == 2^(73*109) (mod 294409), 2^73 == 2^(37*109) (mod 294409), 2^109 == 2^(37*73) (mod 294409).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Claude Goutier; terms 1..3648 from Max Alekseyev)
- Claude Goutier, Compressed text file carm10e22.gz containing all the Carmichael numbers up to 10^22.
- Index entries for sequences related to Carmichael numbers.
Comments