cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291622 Number of irredundant sets in the n X n rook complement graph.

Original entry on oeis.org

2, 9, 94, 777, 3286, 10771, 29366, 69873, 149950, 297111, 553114, 980953, 1677014, 2793771, 4584286, 7492065, 12335422, 20688751, 35673698, 63602601, 117391702, 223644675, 437338630, 872239057, 1763820926, 3599298951, 7386070186, 15205369593, 31353128470
Offset: 1

Views

Author

Eric W. Weisstein, Aug 28 2017

Keywords

Comments

The irredundant sets are the distinct subsets of the maximal irredundant sets. These are either any subset of vertices in a single row or column or otherwise have cardinality of at most four (see A291623). - Andrew Howroyd, Aug 30 2017

Crossrefs

Cf. A291623.

Programs

  • Mathematica
    Table[Piecewise[{{9, n == 2}, {94, n == 3}}, 2 n (2^n) + (5 n^6 - 21 n^5 + 47 n^4 - 51 n^3 + 8 n^2 - 24 n + 12)/12], {n, 20}]
    Join[{2, 9, 94}, LinearRecurrence[{11, -53, 147, -259, 301, -231, 113, -32, 4}, {777, 3286, 10771, 29366, 69873, 149950, 297111, 553114, 980953}, 20]]
    CoefficientList[Series[(2 - 13 x + 101 x^2 - 74 x^3 - 1084 x^4 + 3717 x^5 - 7077 x^6 + 9470 x^7 - 7634 x^8 + 3876 x^9 - 1128 x^10 + 144 x^11)/((1 - x)^7 (1 - 2 x)^2), {x, 0, 20}], x]
  • PARI
    a(n) = if(n<4, [2, 9, 94][n], 2*n*(2^n) + (5*n^6 - 21*n^5 + 47*n^4 - 51*n^3 + 8*n^2 - 24*n + 12)/12); \\ Andrew Howroyd, Aug 30 2017

Formula

From Andrew Howroyd, Aug 30 2017: (Start)
a(n) = 2*n*(2^n) + (5*n^6 - 21*n^5 + 47*n^4 - 51*n^3 + 8*n^2 - 24*n + 12)/12 for n > 3.
a(n) = 11*a(n-1) - 53*a(n-2) + 147*a(n-3) - 259*a(n-4) + 301*a(n-5) - 231*a(n-6) + 113*a(n-7) - 32*a(n-8) + 4*a(n-9) for n > 12.
G.f.: x*(2 - 13*x + 101*x^2 - 74*x^3 - 1084*x^4 + 3717*x^5 - 7077*x^6 + 9470*x^7 - 7634*x^8 + 3876*x^9 - 1128*x^10 + 144*x^11)/((1 - x)^7*(1 - 2*x)^2).
(End)

Extensions

Terms a(6) and beyond from Andrew Howroyd, Aug 30 2017