A291623 Number of maximal irredundant and minimal dominating sets in the n X n rook complement graph.
1, 4, 48, 320, 1610, 6012, 17948, 45488, 101970, 207920, 393272, 699888, 1184378, 1921220, 3006180, 4560032, 6732578, 9706968, 13704320, 18988640, 25872042, 34720268, 45958508, 60077520, 77640050, 99287552, 125747208, 157839248, 196484570, 242712660
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- Eric Weisstein's World of Mathematics, Maximal Irredundant Set
- Eric Weisstein's World of Mathematics, Minimal Dominating Set
- Eric Weisstein's World of Mathematics, Rook Complement Graph
- Index entries for linear recurrences with constant coefficients, signature (7, -21, 35, -35, 21, -7, 1).
Crossrefs
Cf. A291622.
Programs
-
Mathematica
Table[Piecewise[{{1, n == 1}, {4, n == 2}}, 2 n + 6 Binomial[n, 3]^2 + n^2 (n - 1)^2 + 12 Binomial[n, 4] Binomial[n, 2]], {n, 20}] Join[{1, 4}, LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {48, 320, 1610, 6012, 17948, 45488, 101970}, 18]] CoefficientList[Series[(-1 + 3 x - 41 x^2 - 33 x^3 - 273 x^4 + 99 x^5 - 77 x^6 + 27 x^7 - 4 x^8)/(-1 + x)^7, {x, 0, 20}], x]
-
PARI
a(n) = if(n<3, [1,4][n], (5*n^6 - 33*n^5 + 89*n^4 - 99*n^3 + 38*n^2 + 24*n) / 12); \\ Andrew Howroyd, Aug 30 2017
Formula
From Andrew Howroyd, Aug 30 2017: (Start)
a(n) = 2*n + 6*binomial(n,3)^2 + n^2*(n-1)^2 + 12*binomial(n,4)*binomial(n,2) for n > 2.
a(n) = (5*n^6 - 33*n^5 + 89*n^4 - 99*n^3 + 38*n^2 + 24*n) / 12 for n > 2.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 9.
G.f.: x*(1 - 3*x + 41*x^2 + 33*x^3 + 273*x^4 - 99*x^5 + 77*x^6 - 27*x^7 + 4*x^8)/(1-x)^7.
(End)
Extensions
Terms a(6) and beyond from Andrew Howroyd, Aug 30 2017
Comments