cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A292073 Number of dominating sets in the n X n rook complement graph.

Original entry on oeis.org

1, 9, 421, 64727, 33548731, 68719441881, 562949953225997, 18446744073708516927, 2417851639229258344138819, 1267650600228229401496677076985, 2658455991569831745807614120434020301, 22300745198530623141535718272648360902500919
Offset: 1

Views

Author

Eric W. Weisstein, Sep 12 2017

Keywords

Comments

Non-dominating sets are just those that are contained in the union of a single row and column minus the intersecting vertex. - Andrew Howroyd, Sep 13 2017

Crossrefs

Programs

  • Magma
    [1] cat [2^(n^2)-2*n*(2^n-2)+n^2-n^2*(2^(n-1)-1)^2+ n^2*(n-1)^2-2*Binomial(n,2)^2-1: n in [2..15]]; // Vincenzo Librandi, Mar 17 2018
  • Mathematica
    Table[If[n == 1, 1, 2^n^2 + (2^n (n - 2) - 4^(n - 1) n + (n - 1)^2 n/2 + 4) n - 1], {n, 20}]
  • PARI
    a(n) = if(n == 1, 1, 2^(n^2) - 2*n*(2^n - 2) + n^2 - n^2*(2^(n-1)-1)^2 + n^2*(n-1)^2 - 2*binomial(n,2)^2 - 1); \\ Andrew Howroyd, Sep 13 2017
    

Formula

a(n) = 2^(n^2) - 2*n*(2^n - 2) + n^2 - n^2*(2^(n-1)-1)^2 + n^2*(n-1)^2 - 2*binomial(n,2)^2 - 1 for n > 1. - Andrew Howroyd, Sep 13 2017

Extensions

a(6)-a(12) from Andrew Howroyd, Sep 13 2017

A292074 Number of minimum dominating sets in the n X n rook complement graph.

Original entry on oeis.org

1, 4, 48, 240, 1000, 3300, 9114, 21952, 47520, 94500, 175450, 307824, 515112, 828100, 1286250, 1939200, 2848384, 4088772, 5750730, 7942000, 10789800, 14443044, 19074682, 24884160, 32100000, 40982500, 51826554, 64964592, 80769640, 99658500, 122095050
Offset: 1

Views

Author

Eric W. Weisstein, Sep 12 2017

Keywords

Comments

The minimum dominating sets are the minimal dominating sets (A291623) of size equal to the domination number. For n > 2, the domination number is 3. For n > 3, the minimal dominating sets of size 3 are either any three vertices such that no two are in the same row or column or any vertex with another in the same row and a third in the same column. For n = 3, the case of all vertices in a single row or column also needs to be included. - Andrew Howroyd, Sep 13 2017

Crossrefs

Programs

  • Mathematica
    Join[{1, 4, 48}, LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {240, 1000, 3300, 9114, 21952, 47520, 94500}, 20]]
    Table[Piecewise[{{1, n == 1}, {48, n == 3}}, 6 Binomial[n, 3]^2 + n^2 (n - 1)^2], {n, 20}]
    CoefficientList[Series[(-1 + 3 x - 41 x^2 + 47 x^3 - 223 x^4 + 221 x^5 - 217 x^6 + 127 x^7 - 42 x^8 + 6 x^9)/(-1 + x)^7, {x, 0, 20}], x]
  • PARI
    a(n) = if(n<4, [1,4,48][n], 6*binomial(n, 3)^2 + n^2*(n-1)^2); \\ Andrew Howroyd, Sep 13 2017

Formula

G.f.: x*(-1 + 3*x - 41*x^2 + 47*x^3 - 223*x^4 + 221*x^5 - 217*x^6 + 127*x^7 - 42*x^8 + 6*x^9)/(-1 + x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 10.
a(n) = 6*binomial(n, 3)^2 + n^2*(n-1)^2 for n > 3. - Andrew Howroyd, Sep 13 2017

Extensions

Terms a(6) and beyond from Andrew Howroyd, Sep 13 2017

A384123 Array read by antidiagonals: T(n,m) is the number of minimal dominating sets in the n X m rook complement graph.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 12, 48, 12, 1, 1, 1, 1, 37, 121, 121, 37, 1, 1, 1, 1, 98, 278, 320, 278, 98, 1, 1, 1, 1, 219, 579, 729, 729, 579, 219, 1, 1, 1, 1, 430, 1102, 1480, 1610, 1480, 1102, 430, 1, 1, 1, 1, 767, 1943, 2741, 3161, 3161, 2741, 1943, 767, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, May 20 2025

Keywords

Comments

For n > 2, m > 2, the minimal dominating sets are:
- all vertices in any single row or column,
- any three vertices such that no two are in the same row or column,
- any vertex with another in the same row and a third in the same column,
- two vertices in each of two rows/columns and none in the same column/row.
Except for (n,m) = (2,3) or (3,2), also the number of maximal irredundant sets in the n X m rook complement graph. In particular, there are 11 maximal irredundant sets in these two graphs.

Examples

			Array begins:
===================================================
n\m | 0 1   2    3    4    5     6     7     8 ...
----+---------------------------------------------
  0 | 1 1   1    1    1    1     1     1     1 ...
  1 | 1 1   1    1    1    1     1     1     1 ...
  2 | 1 1   4    5   12   37    98   219   430 ...
  3 | 1 1   5   48  121  278   579  1102  1943 ...
  4 | 1 1  12  121  320  729  1480  2741  4716 ...
  5 | 1 1  37  278  729 1610  3161  5682  9533 ...
  6 | 1 1  98  579 1480 3161  6012 10513 17234 ...
  7 | 1 1 219 1102 2741 5682 10513 17948 28827 ...
  8 | 1 1 430 1943 4716 9533 17234 28827 45488 ...
   ...
The T(2,3) = 5 minimal dominating sets are those that contain all vertices in either a single row or a single column. There are also 6 maximal irredundant sets that are not dominating. These are those that contain one vertex in each of the two rows but not in the same column.
		

Crossrefs

Main diagonal is A291623.
Columns 0 and 1 are A000012.
Column 2 is A289121 for n > 1.

Programs

  • PARI
    T(n,m) = {if(n<=1||m<=1, 1,  n + m + 6*binomial(n,3)*binomial(m,3) + if(n > 2 && m > 2, n*(n-1)*m*(m-1)) + 6*binomial(n,4)*binomial(m,2) + 6*binomial(n,2)*binomial(m,4))}

Formula

T(n,m) = n + m + 6*binomial(n,3)*binomial(m,3) + n*(n-1)*m*(m-1) + 6*binomial(n,4)*binomial(m,2) + 6*binomial(n,2)*binomial(m,4) for n > 2, m > 2.
T(n,m) = T(m,n).

A291622 Number of irredundant sets in the n X n rook complement graph.

Original entry on oeis.org

2, 9, 94, 777, 3286, 10771, 29366, 69873, 149950, 297111, 553114, 980953, 1677014, 2793771, 4584286, 7492065, 12335422, 20688751, 35673698, 63602601, 117391702, 223644675, 437338630, 872239057, 1763820926, 3599298951, 7386070186, 15205369593, 31353128470
Offset: 1

Views

Author

Eric W. Weisstein, Aug 28 2017

Keywords

Comments

The irredundant sets are the distinct subsets of the maximal irredundant sets. These are either any subset of vertices in a single row or column or otherwise have cardinality of at most four (see A291623). - Andrew Howroyd, Aug 30 2017

Crossrefs

Cf. A291623.

Programs

  • Mathematica
    Table[Piecewise[{{9, n == 2}, {94, n == 3}}, 2 n (2^n) + (5 n^6 - 21 n^5 + 47 n^4 - 51 n^3 + 8 n^2 - 24 n + 12)/12], {n, 20}]
    Join[{2, 9, 94}, LinearRecurrence[{11, -53, 147, -259, 301, -231, 113, -32, 4}, {777, 3286, 10771, 29366, 69873, 149950, 297111, 553114, 980953}, 20]]
    CoefficientList[Series[(2 - 13 x + 101 x^2 - 74 x^3 - 1084 x^4 + 3717 x^5 - 7077 x^6 + 9470 x^7 - 7634 x^8 + 3876 x^9 - 1128 x^10 + 144 x^11)/((1 - x)^7 (1 - 2 x)^2), {x, 0, 20}], x]
  • PARI
    a(n) = if(n<4, [2, 9, 94][n], 2*n*(2^n) + (5*n^6 - 21*n^5 + 47*n^4 - 51*n^3 + 8*n^2 - 24*n + 12)/12); \\ Andrew Howroyd, Aug 30 2017

Formula

From Andrew Howroyd, Aug 30 2017: (Start)
a(n) = 2*n*(2^n) + (5*n^6 - 21*n^5 + 47*n^4 - 51*n^3 + 8*n^2 - 24*n + 12)/12 for n > 3.
a(n) = 11*a(n-1) - 53*a(n-2) + 147*a(n-3) - 259*a(n-4) + 301*a(n-5) - 231*a(n-6) + 113*a(n-7) - 32*a(n-8) + 4*a(n-9) for n > 12.
G.f.: x*(2 - 13*x + 101*x^2 - 74*x^3 - 1084*x^4 + 3717*x^5 - 7077*x^6 + 9470*x^7 - 7634*x^8 + 3876*x^9 - 1128*x^10 + 144*x^11)/((1 - x)^7*(1 - 2*x)^2).
(End)

Extensions

Terms a(6) and beyond from Andrew Howroyd, Aug 30 2017
Showing 1-4 of 4 results.