cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291623 Number of maximal irredundant and minimal dominating sets in the n X n rook complement graph.

Original entry on oeis.org

1, 4, 48, 320, 1610, 6012, 17948, 45488, 101970, 207920, 393272, 699888, 1184378, 1921220, 3006180, 4560032, 6732578, 9706968, 13704320, 18988640, 25872042, 34720268, 45958508, 60077520, 77640050, 99287552, 125747208, 157839248, 196484570, 242712660
Offset: 1

Views

Author

Eric W. Weisstein, Aug 28 2017

Keywords

Comments

From Andrew Howroyd, Aug 30 2017: (Start)
For n > 2 the maximal irredundant sets are:
- all vertices in any single row or column,
- any three vertices such that no two are in the same row or column,
- any vertex with another in the same row and a third in the same column,
- two vertices in each of two rows/columns and none in the same column/row. (End)

Crossrefs

Cf. A291622.

Programs

  • Mathematica
    Table[Piecewise[{{1, n == 1}, {4, n == 2}}, 2 n + 6 Binomial[n, 3]^2 + n^2 (n - 1)^2 + 12 Binomial[n, 4] Binomial[n, 2]], {n, 20}]
    Join[{1, 4}, LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {48, 320, 1610, 6012, 17948, 45488, 101970}, 18]]
    CoefficientList[Series[(-1 + 3 x - 41 x^2 - 33 x^3 - 273 x^4 + 99 x^5 - 77 x^6 + 27 x^7 - 4 x^8)/(-1 + x)^7, {x, 0, 20}], x]
  • PARI
    a(n) = if(n<3, [1,4][n], (5*n^6 - 33*n^5 + 89*n^4 - 99*n^3 + 38*n^2 + 24*n) / 12); \\ Andrew Howroyd, Aug 30 2017

Formula

From Andrew Howroyd, Aug 30 2017: (Start)
a(n) = 2*n + 6*binomial(n,3)^2 + n^2*(n-1)^2 + 12*binomial(n,4)*binomial(n,2) for n > 2.
a(n) = (5*n^6 - 33*n^5 + 89*n^4 - 99*n^3 + 38*n^2 + 24*n) / 12 for n > 2.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 9.
G.f.: x*(1 - 3*x + 41*x^2 + 33*x^3 + 273*x^4 - 99*x^5 + 77*x^6 - 27*x^7 + 4*x^8)/(1-x)^7.
(End)

Extensions

Terms a(6) and beyond from Andrew Howroyd, Aug 30 2017